The floodplain meadows with Great Burnet

(Sanguisorba officinalis):

a look across geographical gradient

Tatyana Parinova
I am going to talk about:

• Russian floodplains – ideal area to study meadows as intrazonal (azonal) vegetation type

• *Sanguisorba officinalis* – what is special about this meadow forb

• Communities with *Sanguisorba officinalis*:
 ✓ Species richness
 ✓ Productivity
 ✓ Biogeographical diversity of Sanguisorba meadows
With 2,500,000 rivers, the floodplains in Russia cover over 200,000 square kilometres.
Five rivers where long-term monitoring of the meadow vegetation was carried out:

1 – Ugra – 48 years of monitoring
2 – Khoper – about 20 years
3 – Volga – about 20 years
4, 5 – Ob – about 20 years
Five sites where Sanguisorba meadows were studied in 2016.
Floodplain meadows are classified as azonal type of vegetation

- Zonal vegetation reflects climate differences:
 - from tundra in Arctic to the south steppe and deserts in the South
 - From the ocean climate influenced by Atlantics to highly continental climate of Siberia

Meadows are not associated with any particular climate as local factors as floods and hay-making/pasture put much more powerful selective pressure on the plant communities.
Sanguisorba officinalis (Great Burnet) is almost a cosmopolitan species occurring from mountains to the floodplains on several continents.

Data from GBIF Portal
On the floodplains, Sanguisiorba meadows can be found on a wide range of soils.
Seedlings of Great Burnet are very weak competitors...

Sanguisorba officinalis on the sand river bank, Surgut, Western Siberia, Russia
Photo@Mike Dodd

Sanguisorba officinalis on the gravel-sand bar, Kamtchatka, Russia
Photo@Boris Bolshakov
... whereas adult plants persist in the fully-formed communities for a long time
Hypothesis 1: Communities with *Sanguisorba officinalis* are the most species rich among others on the floodplains.
Species richness on the plots with and without Great Burnet on international (A) and British (B) meadows.

A

<table>
<thead>
<tr>
<th>Location</th>
<th>With SO</th>
<th>Without SO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baisa</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>Vyatka</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Khoper</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Thames</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>N.Dvina</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Location</th>
<th>Species number per 1 sq m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clattinger Farm</td>
<td>30</td>
</tr>
<tr>
<td>Duckington</td>
<td>25</td>
</tr>
<tr>
<td>East Cottingwith</td>
<td>20</td>
</tr>
<tr>
<td>Mottey</td>
<td>15</td>
</tr>
<tr>
<td>Wheldrake</td>
<td>10</td>
</tr>
<tr>
<td>Portholme</td>
<td>5</td>
</tr>
</tbody>
</table>
Species richness of the communities does not positively correlate either with the biomass of *Sanguisorba officinalis* (A) or with productivity of the communities (B).
Hypothesis 2: Productivity of the meadows with *S. officinalis* is more sustainable comparing to other floodplain communities.
Long-term changes in biomass of *S. officinalis* at the Khoper river (1979-1986)
NMS Analysis of the data using Ellenberg indicator scores

F – soil moisture
N – soil nutrients
T – temperature (climate)
K – continentality of the climate (related to the distance from the sea)

1 – Baisa
2 – Khoper
3 – Northern Dvina
4 – Thames
5 – Vyatka
Floristic latitudinal groups in Sanguisorba meadows:

- **Arctic alpine**
- **Arctic boreal**
- **Boreal (taiga)**
- **Boreal mountain**
- **Subarctic**
- **Forest-steppe**
- **Broad-leaved forest**
- **Azonal**
- **Steppe**

Thames
Khoper
Northern Dvina
Vyatka
Baisa
Floristic longitudinal groups in Sanguisorba meadows:

- Thames
- Khoper
- Northern Dvina
- Vyatka
- Baisa
Floristic similarity of Sanguisorba meadows at three taxonomical levels (ranges of Jaccard Coefficient (%) between the sites)

<table>
<thead>
<tr>
<th></th>
<th>Thames</th>
<th>Khoper</th>
<th>Vyatka</th>
<th>Northern Dvina</th>
<th>Baisa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td>8-15</td>
<td>8-20</td>
<td>9-11</td>
<td>8-11</td>
<td>3-8</td>
</tr>
<tr>
<td>Genera</td>
<td>17-27</td>
<td>17-38</td>
<td>17-25</td>
<td>17-27</td>
<td>17-18</td>
</tr>
<tr>
<td>Families</td>
<td>43-50</td>
<td>39-50</td>
<td>47-57</td>
<td>50-52</td>
<td>40-52</td>
</tr>
</tbody>
</table>
Conclusion

- Sanguisorba meadows can be found on the floodplains across Europe and Asia, from Arctic and Subarctic latitudes down to the south for several thousand kilometres. They represent the species-rich and highly productive plant communities of hay meadows.

- Sanguisorba meadows can be considered as an azonal vegetation type however, influence of surrounding biomes on the floristic composition is apparent both in latitudinal and longitudinal directions.

- Floristic similarity between pairs of sites reaches about 10% at the species level, 20% at the genera level, and up to 50% at the family level.

- Plant communities with *Sanguisorba officinalis* are shown to be more species-rich comparing to other parts of the same meadow.

- High level of species diversity does not positively correlate with productivity of Sanguisorba meadows. The communities with medium number of species appeared to be most productive.
Acknowledgements

My family whose constant support is immensely important for my research.

Dr Mike Dodd and Dr Irina Tatarenko for the helpful suggestions with this presentation.