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Abstract 

Senecio aquaticus is a problematic pest species due to its toxic nature. It can cause economic and 

habitat loss. Senecio aquaticus occurs on the rare and very species rich MG8 plant community. 

This community relies on management practices including grazing and hay cutting to persist. 

Where S.aquaticus is prevalent agricultural abandonment could lead to habitat loss. 

At present there are no adequate control methods for S.aquaticus as current ones are costly or 

may damage habitat. This thesis aimed to take an ecological approach to this problem to find a 

new control method that was both cost effective and would not damage the habitat. 

Four potential control methods were trialled. Farmyard manure application, Lime, Drainage 

gutters and Early hay cut, aiming to take advantage of S.aquaticus s poor competitiv~ ability, by 

promoting the surrounding vegetation and out-competing the Senecio. Early hay cut aimed to 

prevent seed set. Hay cut and manure decreased the Senecio population after two years, hay cut 

having the biggest effect. Lime and drainage did not reduce abundance although S.aquaticus 

abundance was demonstrated to correlate with high water table. Pot experiments revealed that 

cutting time should be around the 15th June to prevent plants reflowering and before seedset. 

Seed bank analysis indicated a short lived seed bank. Competition experiments revealed root 

competition to be most influential and adult plants most sensitive. Productivity decreased with 

competition intensity. 

Early hay cut had no negative impact on the plant community, however manure decreased 

diversity and likeness to MG8 with an increase in grass and loss of forbes. Due to this negative 

impact on plant community it should not be used. 

This study recommends the use of early hay cut around the 15th of June for two consecutive years 

as a S.aquaticus control method. 
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Chapter 1 

Introduction 

This Chapter introduces Senecio aquaticus, the 

problems it presents, the need for a new control 

method for it and the avera II layout of the thesis 



1 Introduction 

Marsh ragwort (Senecio aquaticus) is an herbaceous composite that is native to the British Isles 

and Europe. Ragwort is an important pest species as it is an aggressive weed that competes with 

other plants of ecological or economic importance, for example valuable pasture land. More 

importantly it accumulates pyrrolizidine alkaloids which are toxic and fatal to both wildlife and 

livestock. Little work has been done on this particular species, even though its close relative, 

common ragwort (Senecio jocobaea,) has been studied extensively. There is therefore a major gap 

in our current knowledge of ragwort control, because Senecio aquaticus (Fig.l .l) can be as 

important locally as Senecio jacobaea. 

Figure 1.1 Senecio aquaticus on West Sedgemoor RSPB reserve Somerset 
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1.1 Life History 

Unlike for its relative S. jacobaea, little work has been undertaken into the life history of S. 

aquaticus. The literature is sparse and often not backed up by experimental evidence. 

S. aquaticus is a composite forb and a member of the family Asteraceae. It stands smaller than the 

more common S. jacobaea at 25-80 cm (Clapham et ai, 1968) and the basal leaves are elliptical or 

oval and undivided. It has smaller more loosely spreading inflorescences than S. jacobaea. It has 

striking yellow flowers making it easily identifiable. 

S. aquaticus is regarded as a biennial, with seedlings germinating and establishing during year 1, 

over wintering as rosettes and then flowering in late June to August the next year (Simpson 1993). 

The flowering period is shorter than that of S. jacobaea, which occurs between June and October 

(Simpson, 1993). Although S. aquaticus behaves as a biennial the majority ofthe time, it has been 

suggested that it can behave as a perennial if grazing or cutting prevents flowering though no 

experimental evidence is available for this. This trait is common in S. jacobaea, but is thought to 

be less so in S. aquaticus (Otzen, 1997). S. jacobaea has been shown to continue to survive in 

some cases after flowering (Forbes, 1977) though this is contradicted by Van der Meijden and Van 

der Waals Koi who found that after it had flowered vegetative growth was no longer possible. S. 

aquaticus has not been demonstrated to survive after flowering. It has been shown that S. 

jacobaea often still has high carbohydrate reserves after flowering, which may enable it to survive 

whilst carbohydrate reserves in S. aquaticus decline dramatically after flowering (Otzen, 1997). S. 

jacobaea plants must attain a threshold size in order to flower (van der meijden and van der 

Waals Koi, 1979. No work has been done to determine if this is a requirement for S. aquaticus. 

There is no literature regarding pollination for S. aquaticus, but S. jacobaea is usually self

pollinated rather than insect pollinated despite being visited regularly by numerous insects 

(Simpson,1993). Senecio species produce two types of seeds; those produced from ray florets 

which are glabrous and those that come from disk florets which are hairy. Seeds are 
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predominantly wind dispersed and studies with 5. jacobaea show they generally do not travel far 

from the parent plant. Seeds from the disk florets travel further from the plant than the ray 

florets. Pool and Cairnes (1940) demonstrated that up to 60% of seed was shed at the base of the 

plant and very few seeds made it over 5 m away. Those that made it over 5 m are lighter and less 

likely to germinate. 

5. jacobaea seed have been shown to germinate easily in light (Wasson and Waring, 1969) but 

dormancy can be induced by burial (Wesson and Waring 1969). Mortality of seeds was shown to 

be related to depth of burial with seeds buried at 0-2 cm taking 4-6 years to reach 99% mortality 

compared to 14-16 years when buried at >4cm (Thompson and Makepeace, 1983). No 

comparative work has been undertaken into dormancy of s. aquaticus . Germination of s. 

aquaticus occurs in two periods from August to September and from April to May (Simpson, 

1993). There has been little work in to the population dynamics of 5. aquaticus but studies of 5. 

jacobaea show large variations in populations annually. Populations also suffer high mortality 

with only about a quarter of the plants that reach the rosette stage going on to flower and only 

about 1 % of viable seeds germinating (Forbes 1985) 

Although there is a great deal of literature available on the life history of 5. Jacobaea there are 

clearly large gaps in the knowledge of 5. aquaticus. Chapter 3 will attempt to address some of 

these gaps and aims to lead to a better understanding of the ecology of 5. aquaticus 

1.2 Occurrence af Senecio aquaticus 

Marsh ragwort (5. aquaticus) is native to Europe, but has also invaded the United States (USDA 

2010), Australia (Mclaren et al. 2000) and New Zealand (Sullivan 2006). Not surprisingly given its 

name,S. oquaticus is mainly found in wet grasslands such as meadows and marshes (Roberts and 

Pullin 2007) though it has recently been reported to have invaded arable land and drier pastures 

(Suter and LUscher 2008). In Britain, it is found mainly in wet grassland in the north and west 

(Forbes, 1977). It is particularly prevalent on the Yorkshire Derwent and on the Somerset levels 

and Moors and it is here that this study took place. 
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S. aquaticus is associated with poor pasture, where gaps in the sward allow it to establish. It was 

found that very open swards had higher numbers of S. aquaticus than closed swards (Forbes, 

1976, McClements 1992). In a similar study McClements (1992) scored fields on percentage bare 

ground. It was demonstrated that there was a higher chance of S. aquaticus being present in 

areas where a high percentage of bare ground existed. It is a poor competitor and therefore only 

occurs where there is low competition, for example in unimproved, over grazed or poached 

grassland (McClements, 1992). S. aquaticus is able to tolerate waterlogged conditions having a 

shallow, highly branched root system. Experiments in low oxygen rooting media show that S. 

aquaticus sustains a much higher rate of respiration, higher internal oxygen concentration and 

better shoot growth than Senecio jocobea (lambers, 1976; lambers et ai, 1978, 1979). The 

incidence of marsh ragwort has been reported to have increased in recent years especially in west 

and central Europe (Bezemeret al. 2006a; Suter et al. 2007,2008). This can be attributed to the 

change to less intensive, more environmentally friendly farming methods with low fertilizer input, 

which results in less dense swards and therefore less competition. There is also a move to raise 

water levels on land that was previously drained for agriculture. This can favour S. aquaticus over 

other pasture species. 

1.3 Ragwort as a pest species 

S. aquaticus, along with other ragwort species is regarded by many as an important pest species 

primarily because it is toxic and can be fatal to stock when consumed (Evans and Evans, 1949). S. 

aquaticus contains several toxic compounds (including phenylpropanoids, flavanoids, and 

benzoquinonejacaranone), but the most problematic are the pyrrolizidine alkaloids (PAs). The 

PAs found in S. aquaticus are jacobine, seneciphylline, spartioidine, jacozine, senecionine, 

erucifoline and 9-angeloylhastanecine (Christov et aI., 2002.) They are variously carcinogenic, 

mutagenic, genotoxic and fetotoxic (toxic to the fetus). The pyrrolizidine alkaloids are converted 
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to pyrroles in the presence of certain enzymes in the liver, leading to liver failure and eventually 

death of the animal (Bedell et 01, 1984). If large enough quantities are ingested, poisoning can be 

acute, and death can occur within a few days of ingestion. However, more often the poisoning is 

chronic and the damage is cumulative. More than 26 different animal species (including spiders 

and insects) have been shown to be adversely affected by PAs. Cattle and horses are particularly 

susceptible to s. aquaticus poisoning, sheep and goats have a higher resistance to the alkaloids, 

but can still be poisoned. Pigs and chickens have also been shown to be susceptible (Simpson 

1993). Interestingly, deer (Dean and Winward, 1974) and rabbits (Simpson, 1993) appear 

unaffected. 

Introduced stock is more likely to get ragwort poisoning than animals reared on ragwort infested 

pastures (Simpson, 1993.) It is thought that this may be because there is less discrimination from 

stock that does not encounter the plant whilst young. Poisoning can occur when fresh plants are 

eaten, but also when the plants are dried in the form of hay; the PAs are not destroyed during his 

process and have been demonstrated to retain their toxicity over a very long period (Candrian et 

al. 1984). Studies have shown however that silage production can dramatically reduce the 

concentrations of PAs. It is assumed that during the fermentation process, some of the PAs are 

enzymatically decomposed. One study showed a reduction of PAs to 20% of their original 

concentration was possible under certain conditions (Candrian et al. 1984). 

1.4 Palatability 

Due to its bitter taste, cattle and horses will generally avoid s. aquaticus when grazing a sward. 

However, where pasture is poor and there is little alternative food, they will resort to eating it 

(Forbes 1985). When the plant is wilted or dried in hay however, the plant loses much of its bitter 

taste and is not discriminated against. It is thought that the majority of cases of ragwort 

poisoning occur as a result of the animal eating contaminated hay rather than pasture (Donald 

and Shanks, 1956; Petrie and logan, 1980). Some herbicides can make ragwort more palatable as 

they increase the concentration of sugars and water soluble carbohydrates (Irvine et ai, 1977). 
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PA concentrations have been shown to vary with age of plant, time of year and location within the 

plant. It was found that the majority of PAs were concentrated in the flowers of the plants with 

less in the vegetative parts. It has been found that 5. aquaticus has lower concentrations of PAs 

than jacobea (Vrieling unpublished). This contradicted the statement in Evans and Evans 1949, 

who suggested aquaticus was as toxic as jacobea. It has been demonstrated that PA 

concentrations in 5. aquaticus can be influenced by concentrations of nitrogen in the soil (Hoi, 

2011) 

1.5 Symptoms 0/ S. aquaticus poisoning. 

Animals often only exhibit signs of poisoning when liver failure is advanced. Most of the 

symptoms are the same as other causes of liver failure: weight loss, icterus, behavioural 

abnormalities due to hepatoencephalopathy and photosensitive dermatitis (Radostits et al 2000). 

Cattle and horses may present with depression, decreased sensitivity to stimuli, excitability and 

aggressive behaviour, profuse diarrhoea possibly resulting in a rectal prolapse (Radostits et al 

2000). Death usually occurs 2-3 days after the onset of clinical signs. Poisoned horses (Fig 1.2) may 

appear blind and walk into or through fences and lose their sense of purpose by walking aimlessly 

in circles or straight lines. Head pressing and ataxia are common. Episodes of spontaneous, 

uncontrolled galloping may be seen and often result in trauma to the animal (Radostits et ai, 

2000.) This unusual behaviour has led to many people referring ragwort poisoning as walking 

disease (Bull et aI1968). 

Figure 1. 2. Horse exhibiting signs of Senecio poisoning 
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1.6 Incidence of ragwort poisoning 

It is hard to determine accurately the incidence of S. aquaticus poisoning. There are no records 

currently kept in the UK and previous attempts to estimate the numbers have been scientifically 

flawed. It is also impossible to tell by current testing methods which species of Senecio is 

responsible for the poisonings, so no records for the incidence of S. aquaticus pOisoning exist. It 

may be possible to guess at the species of ragwort if it is known where the animal had been 

grazing, but as poisoning is cumulative and takes place over a period of time and animals are 

frequently moved, this is often difficult. 

At present, the most common diagnostic tool used to identify ragwort poisoning is via liver 

biopsy, which is both costly and intrusive, though it is possible to identify ragwort pOisoning in 

livestock via the identification of sulphur-bound pyrrolic metabolites on their haemoglobin 

(Seawrite et ai, 1991) or by changes in blood proteins (Moore et al 2008). However few animals 

are tested for S. aquaticus poisoning and where liver failure is the cause of death it is often 

attributed to S. aquaticus poisoning without further investigation. 

1.7 Economic cost 

Although there are no data available on economic losses caused by S. aquaticus, ragwort species 

in general can result in large economic losses to the farmer, from direct loss of stock, loss of 

productivity, poisoned cattle, reduced butter fat in milk, loss of muscle mass and loss of hay crops 

from infested swards. There are costs associated with control methods. The Australian dairy 

industry estimated a loss of $4 million per year due to ragwort pOisoning of cattle (Roberts and 

Pullin 2006). 

1.8 Legislation 

Senecio species are covered by legalisation in several countries including Ireland, New Zealand, 

Australia and the Netherlands. In the UK, Senecio jacobaea is covered by the both the Weeds Act 

of 1959 and the 2003 Ragwort Control Act. However S. aquaticus is not specifically mentioned in 
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these Acts and therefore there is no legal obligation to control it. Contrary to popular belief, the 

Ragwort Control Act and Weeds Act do not automatically oblige land owners to control Senecio 

jocoboeo, but allow for an order to be made for its control when it becomes a problem. 

1.9 Dangers to humans 

It is also well established that PAs are not only hazardous for livestock, but also for humans and 

there have been many documented cases of poisoning as a result of contaminated food stuffs; for 

example in the 1920s a widespread liver disease in South Africa was shown to be caused by the 

consumption of bread contaminated with seeds from Senecio species. There is also evidence of 

PAs from Senecio species contaminating milk and meat products (Cristobal et ai, 1981). The World 

Health Organisation considers PAs a contaminant in food and recommends a maximum 

concentration of 0.1 g per 100 g in food (Edgar et al 2002). Feeding experiments with cows 

demonstrate PA concentrations of up to 10 1lg/100 ml milk and up to 4 1lg/100 g liver tissue 

(Dickinson et al. 1976; Candrian et al. 1991). Candrian et al state that it should be assumed that 

even low consumption of S. aquaticus by cattle could exceed PA concentrations recommended by 

the World Health Organisation. Honey has also been found to be contaminated with PAs from 

ragwort species. However, this honey has an unpleasant taste and smell so is unlikely to be 

consumed (Simpson1991). 

1.10 Bene/icial aspects of s. oquaticus 

Despite its status as a pest species,S. aquoticus is quite a rare plant. Indeed in some countries 

(e.g. Germany) it is a red-list species. It may also be an important plant for other species; at least 

30 insect species (and 14 species of fungi) are entirely reliant on ragwort, and about a third of 

these insects are scarce or rare (Buglife,2011). There are no studies at present on the particular 

invertebrate community of S. oquoticus however. Senecio species are an excellent nectar source 

and it is estimated that over 200 insects use S. jocoboeo including bees and hoverflies (Clapham et 

al., 1962). It is also reported to be the native plant used most extensively by butterflies (Wiggins, 

1977). 
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1.11 S. aquaticus as a nuisance in conservation management 

S. aquaticus is particularly problematic in species-rich grasslands, such as that labelled MG8 

(Cynosurus cristatus-Caltha palustris grassland community) by the National Vegetation 

Classification (Rodwell, 1991). It has been reported by many farmers (personal communication) 

that since conservation bodies have taken over the management of such grasslands, there has 

been an increase in the abundance of S. aquaticus. This increase in Senecio abundance may be 

attributable to the conservation management of these communities; the community needs low 

nutrient inputs to maintain the species composition, which can result in a less dense sward cover 

with less competition, creating gaps allowing S. aquaticus seedlings to germinate. The community 

also need constantly moist soils and therefore conservation organisations have raised water levels 

on previously drained land to create more favourable habitat for breeding waders and other 

species. 

Although where land is managed for conservation, productivity is not the primary aim (and 

therefore economic losses of stock or hay are less important), S. aquaticus is still problematic. This 

is because these species-rich sites require the traditional management of grazing and hay cutting 

to persist as these operations remove nutrients and prevent succession occurring. Where large 

abundances of S. aquaticus are present on these sites, farmers are obviously reluctant to 

endanger their stock by grazing them or feeding them contaminated hay and abandonment for 

agriculture can take place. Disposal of contaminated hay crops and control methods (such as hand 

pulling) can be costly to conservation bodies. Sites such as those on the Somerset Moors are often 

owned or tenanted by a number of farmers who worry about large S. aquaticus numbers on 

adjacent land spreading to theirs. This had led to both ill feeling and conflict between 

conservation bodies, such as the RSPB and Natural England who manage the sites, and local 

farmers and tenants. Therefore it is important for conservation bodies to control their S. 

aquaticus populations to maintain good relations with their neighbours and tenant farmers who 

assist with the managing of the land. 
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1.12 Current control Methods 

Several different methods are implemented to control ragwort. The same methods are used for 

control of S. aquoticus as Senecio jacobeo. These include hand pulling, mechanical control, 

chemical control, grazing and biological control. 

1.12.1 Hand Pulling 

Hand pulling is one of the most common techniques used at present on nature reserves. It is 

extremely labour intensive and impractical. In heavily infested fields, it can take several people a 

day to clear just two hectares. There is also no evidence that hand pulling has any long term 

impact on S. aquoticus populations. Hand pulling has been extensively practiced on the West 

Sedgemoor nature reserve for a number of years (Fig. l.3L but there has been no decline in S. 

aquaticus abundance in that time (Paget-Wilkes, pers. comm). It can however be a useful tool in 

removing plants from a hay crop before cutting or before they flower and also to placate the 

farming community. There is concern that handling S. oquaticus might result in poisoning through 

absorption through the skin; however there appears to be no scientific evidence to back this up. 

Figure 1.3. Volunteers hand pulling Senecio aquoticus on West Sedgemoor RSPB reserve 

Somerset 
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1.12.2 Mechanical control (mowing) 

Mechanical control, though widely used, has proven ineffective because of the plant's ability to 

regenerate from small fragments. It was found by Poole and Cairns (1940) that this method 

actually enhanced ragwort growth when applied at certain stages of the plant's life-cycle (Wardle, 

1987). 

1.13.3 Chemical control 

Chemical control is the method used most frequently for ragwort, although it is poor at 

controlling older plants. Many different herbicides have been successfully used to control ragwort 

species, but primarily selective ones such as the artificial auxins 2,4-dichlorophenoxyacetic acid 

(2,4-0) and methyl-4-chlorophenoxyacetic acid (MCPA) (Forbes 1978). Meta-analysis has shown 

that carbamates, such as Asulam, to be one of the most effective at controlling s. aquaticus 

(Roberts and Pulin, 2007). However, herbicides do have side effects including killing non-target 

plants, such as clover, which is an important plant in pastures (Wardle, 1987). This method is 

particularly undesirable for use with S. aquaticus because it often occurs in diverse meadows, 

where use of herbicide would be detrimental to their conservation interest. Spot spraying can be 

used to help minimise the damage to species rich grassland, however it is labour intensive and 

can result in gaps in the sward, where new ragwort seeds could germinate. 

1.12.4 Grazing with sheep 

Sheep have a higher tolerance to ragwort than other species of livestock and in some cases show 

a preference for it (Bedell et aI, 1984). It has been demonstrated that sheep can significantly 

reduce ragwort. The mean ground cover was reduced from 5.0-6.0% in ungrazed pasture to 1.7-

2.0% in sheep grazed pasture (Wardle, 1987). It is also possible that sheep grazing over time could 

reduce the seed bank. However the Somerset Moors are mainly used for cattle grazing as they are 

considered too wet for sheep. There is also a welfare issue involved in using sheep as a control. It 
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would not be good publicity for conservation bodies if they were seen to be deliberately 

poisoning sheep (Simpson, 1993). Many methods are therefore used for control, but most are 

ineffective or expensive. Chemical control is also undesirable as it can lead to a deterioration in 

pasture quality and also reduce diversity in conservation areas. A long term solution needs to be 

found and an ecological approach may solve the problem 

1.12.5 Biological control 

Biological control has been tria lied extensively with invertebrates including the cinnabar moth, 

ragwort flea beetle and two species of seed fly (Simpson, 1993). It has also been tria lied with 

fungal pathogens (Sedler et aI1983). The cinnabar moth, Tyria jacobaeae, has been used in New 

Zealand (Wardle, 1987) and the USA. Early assessments suggest it provides partial control of 

common ragwort (Hawkes and Johnson 1978). However, common ragwort can recover from 

defoliation (Cox and McEvoy 1983; Islam and Crawley, 1983). There were also failures in 

establishing a moth population due to disease, parasitism and predation (Cameron 1935; 

Dempster 1971; van der Meijden et al. 1991). The moth has proved ineffective because its 

population appears to be dependent on the ragwort population not vice versa. It was found that 

even repeatedly defoliated plants could produce a substantial number of seeds (Islam and Crawly, 

1983) and the defoliation can also lead to the plant becoming perennial. 

Ragwort flea beetles have been used more successfully as a biological control agent. Flea beetles 

released in the USA reduced the number of vegetative plants of common ragwort by 95% and 

flower production by 39% (James et aI., 1992). Flea beetles introduced into Australia were able to 

reduce densities of common ragwort by as much as 90% (Ireson et al. 1991, 2000). The effect of 

the flea beetle is complementary to that of the cinnabar moth. The larvae of the cinnabar moth 

feed on the flowers and leaves in summer. The adults of the flea beetle feed on leaves, while the 

larvae feed on roots and leaf petioles during autumn, winter and spring. A meta-analysis of 

biological control of ragwort species showed that the combination of the cinnabar moth with the 
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flea beetle was most effective with an average decrease in abundance of common ragwort of 

99.5% (Roberts and Pullin 2007). 

1.12.6 Control methods compatible with conservation. 

Many methods are used for control, but many are ineffective or expensive. Chemical control is 

also undesirable as it can lead to a reduction in pasture quality and also reduce diversity in 

conservation areas. A long term solution needs to be found and an ecological approach may solve 

the problem. By taking into consideration the poor competitive ability of S. aquaticus, it might be 

possible to alter environmental conditions to make them less favourable to this species, i.e. by 

creating a tighter sward with fewer gaps and therefore competitively reduce or exclude S. 

aquaticus. 

1.13 Study site: Somerset Moors 

The Somerset Levels and Moors represent the largest area of lowland wet grassland remaining in 

Britain covering approximately 35,000 hectares. The area includes 12 Sites of Special Scientific 

Interest, including the three sites upon which this study takes place (Kings Sedge moor, West 

Sedgemoor and Southlake Moor). As well as being important sites for birds, they are important 

areas for other fauna and flora. These species depend on traditional agricultural management to 

persist, however many sites have been abandoned where Senecio aquaticus is prevalent. This is 

largely due to the fact that no ideal control method has been found for Senecio aquaticus. Current 

methods for ragwort control are either economically unviable or detrimental to other important 

species. 

1.14 Aims and objectives 

This study aimed to take an ecological approach to finding a new non-chemical control method 

for S. aquaticus, which is compatible with management for nature-conservation interest. It aimed 
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to trial four potential new management practices and test their effectiveness at reducing the 

Senecio population. These management practices were: the application of farm-yard manure, 

lime application, drainage gutters and an early hay cut. These treatments aimed to take 

advantage of the poor competitive ability of 5. aquaticus, by increasing the density and 

competitive ability of the surrounding sward and thereby out-competing the species. The early 

hay cut also aimed to prevent plants from setting seed and thereby reducing the population. It is 

important to understand the life history of 5. aquaticus in order to determine mechanisms for 

these treatments and therefore pot experiments were undertaken. It is also important that the 

species-rich grassland is not adversely affected by any potential new management practice, so full 

botanical monitoring was undertaken to asses any impact on the grassland community. 

The study has the following objectives within the overall aim of finding a new management 

practice for the control of 5. aquaticus. 

1) Determine if the treatments tria lied were successful in reducing the abundance of 5. 

aquaticus. 

2) Examine the life history of 5. aquaticus to understand the mechanisms by which the 

treatments affect it. In particular, to understand the life cycle of the plant, its seed-bank 

dynamics, and the impact of hay cutting date on seed production and adult mortality. 

3) Determine if the treatments had any negative impacts on species rich hay meadows 

(MG8) 

1.15 Study approach and organisation of thesis 

This study was undertaken both in the field and under laboratory conditions. The field 

experiments focused on trialling new management practices to reduce abundance of 5. aquaticus. 

The impact of these treatments on the grassland community and on the life history of 5. aquaticus 
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in the field was also investigated. The laboratory experiments focused on understanding the life 

history of S. aquaticus and its responses to competition. 

The main experimental sections of this thesis are presented by chapter as follows 

Chapter 2- Field trial of new management practice for the nOll chemical control of 

marsh ra,l/wort. 

This section focused on a field trial aimed at investigating the effectiveness of the treatments at 

reducing S. aquaticus populations in the field. 

Chapter 3 The lIfe history ofS. aquaticus. 

This chapter focused on understanding the life history of S. aquaticus in order to understand the 

mechanisms and effectiveness of the treatments. It predominantly used mesocosm and pot 

experiments. Life span, seed-bank dynamics and the impact of different cutting dates on survival 

and seed production were investigated along with the effects of different competition intensities 

on productivity for both germination and adult plants. 

Chapter 4 The impact of the treatments on the MGB Cynosurus cristatus -Caltha 

palustris grass/and. 

Chapter 4 investigated the impact of the proposed management practices on the species-rich 

MG8 community to determine if they would have any negative effects on species diversity and 

therefore make them unsuitable management practices. This was undertaken in the field as part 

of the field trial described in chapter 2. 
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Chapter 2 

Field trial of new management 
practice for the non-chemical 
control of marsh ragwort 

This section focuses on a field trial aimed at 

investigating the effectiveness of the treatments at 

reducing S. aquaticus populations in the field. 



Chapter 2- Field trial of new 
management practice for the non
chemical control of marsh ragwort 

2.1 Introduction 

Ragwort species are poor competitors (Forbes, 1976, McClements 1992, Cameron, 1935) and 

therefore the use of other species to competitively exclude them may provide a long term 

management solution for Senecio aquaticus control. This study aimed to design a new method of 

S. aquaticus control based on competitive exclusion. Competitive exclusion is a theory which 

states that two species competing for the same resources cannot stably coexist, if the ecological 

factors are constant (HardinL 1960). Either of the two competitors will always displace the other, 

which eventually leads to the extinction of one species. S. aquaticus plants could be competing for 

light or nutrients. By manipulating environmental conditions, it may be possible to shift the sites 

out of the S. aquaticus realized niche, so that grasses and other species have the competitive 

advantage and are able to exclude S. aquaticus. It is on this principle that this project was based. 

2.1.2 Ragworts as competitors 

The establishment of ragwort is greatly affected by competition as it is a fairly selective species 

(Wardle 1987). The competitors of ragwort are mainly within the Poaceae. S. jacobaea is often 

absent from dense swards, even though its seeds may be abundant (Cameron, 1935). The 

occurrence of S. aquaticus has also been closely linked to poor pasture where gaps in the sward 

allow it to establish. It was found that very open swards had higher numbers of S. aquaticus than 

closed swards (Forbes, 1976, McClements 1992). In a similar study McClements (1992) scored 
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fields on percentage bare ground. It was demonstrated that there was a higher chance of s. 

aquaticus being present in areas where a high percentage of bare ground existed. Several studies 

have found similar results regarding competition with S. jacobaea. Competition between s. 

jacobaea and pasture occurs at all stages of its life. It has been demonstrated that the time S. 

jacobaea is most vulnerable to the effects of competition is early in its life. s. jacobaea requires 

gaps in the sward to germinate and so a continuous sward inhibits germination and probably 

establishment (Wardle 1987). 

An early study by Cameron (1935) demonstrated that condition of pasture had a significant effect 

on S. jacobaea seedling establishment. It was found that pasture with long grass had no S. 

aquaticus seedlings as did short but continuous turf. On overgrazed pasture, 86,120 S. jacobaea 

seedlings per acre were found, on hard exposed soil, 871,200 S. jacobaea seedlings per acre were 

found and on open soil, 2,308,680 s. jacobaea seedlings per acre were found. Also the 

introduction of certain grass species, such as Brachypodium pinnatum and Agrostis stofoni/era, 

has been shown to exclude ragwort (Cameron, 1935). This is notable as Agrostis stofoni/era is a 

prevalent plant on the Somerset levels where this study took place. It has also been found that 

after the s. jacobaea rosettes become established they can compete effectively with grasses and 

clovers. However, taller swards such as hay crops can control established plants (Wardle 1987). 

Gaps in the sward are created predominantly by poaching from livestock and high stocking 

densities have been related to increase S. aquaticus densities (Simpson, 1993). Similar 

relationships have been found with s. jacobaea. It is therefore essential for control that fields are 

not overgrazed. Maintaining a dense continuous sward is therefore important for good ragwort 

control. Factors promoting this, such as the addition of fertilizers, may therefore be useful tools in 

ragwort control (Bedell et of, 1984). It was found that on Boa Island, S. aquaticus seedlings were 

less tolerant to competition than s. jacobaea (McClements 1992). These findings indicate that 

control using this method for s. aquaticus is likely to be a success. 
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2.1.3 Field Trial 

A field trial was set up to investigate possible treatment methods with the aim of implementing 

competitive exclusion by promoting grass production to a level where the S. aquaticus population 

is reduced or excluded by competition from the grasses. Anecdotally S. aquaticus abundance has 

increased significantly in Somerset over the last 30 years, and changes in management practice 

from agricultural to conservation is often cited as the cause of this increase (Bezemeret al., 

2006a; Suter et aI., 2007, 2008.). Understanding what changes in management practice may have 

caused this increase may be key to designing new management practices to implement 

competitive exclusion of S. aquaticus. 

Historically, sites would have been fertilised and limed in an attempt to increase yield and 

therefore maximise agricultural production. However these practices are not considered desirable 

for nature conservation. Fertilizer has been linked to decreases in species richness on meadows as 

many of the constituent species are adapted to low nutrient soils and can only compete 

successfully under those conditions (Kirkham et ai, 2008). The water levels on several sites have 

been raised to make them more favourable to bird species. Traditionally hay crops would have 

been cut in late June, but under conservation management, they are usually cut after the t h July. 

This is largely to allow nesting birds to fledge their chicks, but it is also widely believed that a late 

hay cut can favour botanical diversity as it allows herbs to set seed before the cut. This 

experiment aimed to investigate if a reversion to these traditional management practices can be 

used to decrease S. aquaticus abundance. 

The treatments 

The treatments tria lied were 

1) Addition of farmyard manure 

2) Enhancing surface drainage by installation of grips 
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3) Addition of sufficient lime to restore a surface pH of 6.5 

4) Early cut (as soon as feasible after June the 15th
) 

2.1.4 Hypotheses to be tested 

a) The addition of farmyard manure would decrease S. aquaticus abundance by increasing 

nutrient availability and therefore promote grass growth that outcompetes the S. 

aquaticus. 

b) The addition of lime would decrease S. aquaticus abundance by increasing soil pH 

therefore promoting grass growth and out-competing the S. aquaticus. 

c) Reducing the duration of waterloged soli on the sites would decrease S. aquaticus 

numbers by promoting grass growth and therefore out-competing the S. aquaticus. 

d) Cutting the sites for hay early would reduce the abundance of S. aquaticus by 

preventing plants from setting seed and therefore reducing the seed bank. 

2.1.5 Manure 

The addition of farmyard manure (fertilizer - FYM) aimed to increase the availability of 

phosphorus (P), ammonium (NH4), nitrate (N03) as well as other nutrients such as potassium (K.) 

On average, FYM contains about 2%N, 1.7%K and 4% P, though these nutrients require 

mineralisation by microbial decay before they become available. This microbial activity varies 

considerably with soil moisture, aeration and temperature. IncreaSing these nutrients is likely to 

promote grass growth at the expense of other species. Many previous studies have continually 

demonstrated that grassland community composition is highly controlled by nutrient availability 

(Tilman and Downing, 1996, Gibson, 2009). Numerous experiments with addition of fertilizers 

have shown a corresponding decrease in species richness. This is presumably because an increase 
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in these resources favours fast growing, nutrient demanding species, thus competitively excluding 

other species. This competitive exclusion is likely to impact ragwort abundance. Biomass has been 

negatively correlated with species richness in the Park Grassland experiment (Crawley et ai, 2004) 

and also at the Palace leas experimental plots (Hejcman, 2010). Several studies have also found 

this relationship in the field including one based on MG8 community in Somerset (the same 

community as was used for this study) where it was found that addition of N, P and K significantly 

increased biomass and the proportion of grasses and significantly reduced species richness 

(Kirkham et ai, 2008). P was the most important nutrient in reducing species richness on this site. 

Most of these previous studies have used inorganic fertilizers. However, similar results have been 

obtained using FYM (the fertilizer used in this study). Increases in biomass and decreases in 

species richness were found on the plots at Rothamstead (Crawley et ai, 2004; Thurston et aI., 

1976) and Palace leas Experimental Stations as well as in the field (Kirkham et al 2008). Although 

these decreases in species richness were not as strong as with the inorganic fertilizer, 

comparisons between FYM and the equivalent chemical nutrient revealed little difference 

between the two. Therefore the differences in biomass and species richness are probably due to 

the differing quantities and composition of nutrients between the two (Kirkham et aI., 2008). 

Previous studies have shown that S. aquaticus numbers decrease with an increased soil 

phosphorus status (Simpson, 1993, Forbes, 1977). Studies on S. jacobaea in boxed swards 

indicated the addition of nitrogen decreased seedling emergence. However a parallel study 

showed no change in the field. The study also showed that when grass was suppressed, addition 

of nitrogen increased seedling emergence (Watt, 1986). This demonstrates the importance of 

undertaking this field trial. 
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2.1.6 Drainage 

Drainage has been used historically to enhance grassland production. Drainage removes excess 

water from the soil and helps to create a well-aerated root environment that enhances plant 

uptake of nutrients. Mineralisation of certain nutrients (e.g. phosphorus) occurs more rapidly on 

well aerated soils. Drainage on wet agricultural soils allows plant growth to begin early, continue 

vigorously, and achieve improved levels of productivity (Zucker and Brown 1998). It has been 

demonstrated that hydrological regime is a key factor in determining community composition 

(Silvertown et aI., 1999; Kennedy et aI., 2003). 

Infestation rates of Senecio aquaticus have been correlated with increased duration of 

waterlogged soils (McClements 1999, Forbes, 1976). However, transplant experiments revealed S. 

aquaticus was capable of surviving in much drier conditions and indeed growth and survivorship is 

better in drier conditions. It is therefore hypothesised that this correlation with increased 

waterlogging is due to S. aquaticus being competitively excluded at sites with lower water tables, 

but able to persist on wetter sites where other species cannot tolerate the higher water table. 

This is further evidence to support the theory that reducing the duration of waterlogging may 

decrease S. aquaticus populations. Drier soils are also less likely to poach (become churned up) 

with cattle and machinery. Drainage is therefore likely to reduce the number of gaps in the sward 

for germination to take place. 

2.1.7 Liming 

McClements (1992) found a negative correlation with S.aquaticus abundance and soil pH with 

higher infestations occurred on more acidic plots. Lime has been historically used to increase soil 

fertility and therefore agricultural production (Cooke, 1982). Lime is a naturally occurring 

substance, made up largely of calcium carbonate CaC03. On the soils used for the trial (peats of 
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the Altcar Series), it has the effect of increasing soil pH, which affects soil fertility in several ways: 

1) it increases the availability of nutrients particularly nitrogen, phosphorus and potassium, 2) it 

increases the activity of bacteria and other soil microbes, accelerating soil organic matter 

breakdown and the breakdown of manure, and 3) it can promote earthworm activity in cycling 

organic matter, which improves soil physical properties. 

In the soil, a large proportion of inorganic phosphorus is unavailable to plants as it occurs in 

insoluble compounds. The amount of phosphorus that is available to plants is significantly 

affected by pH. Soil phosphorus is most available for plant use at pH values of 6 to 7. When the 

pH is less than 6, plant available phosphorus becomes increasingly tied up in aluminum 

phosphates. When pH values exceed 7.3, phosphorus is increasingly made unavailable by fixation 

in calcium phosphates. Nitrogen availability is also affected by pH. Plants can take up N in the 

ammonium (NH;) or nitrate (N03-) form. At pH values near neutral (pH 7), the microbial 

conversion of NH4 + to nitrate (nitrification) is rapid and crops generally take up nitrate. In acid 

soils (pH <6), nitrification is slow and plants with the ability to take up NH4+ may have an 

advantage. The increase in pH can also favour legume growth, which in turn can increase the 

amount of nitrogen in the soil. The Park Grass experiments at Rothamsted (Thurston et a11976) 

showed a small increase in plant biomass with the addition of lime, but very large increases when 

applied in conjunction with FYM. This indicated competition may be at a maximum in plots with 

both lime and FYM and illustrates the necessity for a fully factorial design testing all combinations 

of treatments in this trial. 

1.1.8 Early hay cut 

Ragwort numbers have been shown to decrease with frequency of hay cut. The more it is cut, the 

lower the frequency (Simpson, 1993). However at present no studies have investigated the effect 

of time of hay cut. The majority of S. aquaticus plants set seed around the end of June - early July 
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(a shorter time frame than S. jacobaea). The early hay cut may act on S. aquaticus populations in 

several ways a) by removing the flowering heads before the s. aquaticus has a chance to set seed 

thus reducing the seed bank, b) by causing direct mortality to the plants c) by changing sward 

structure and composition. Early hay cuts are thought to favour perennial species and can result 

in a denser sward excluding annuals and biennials such a S. aquaticus (Tow and lazenby, 2001). 

2.2 Methods 

2.2.1 Experimental design 

A field trial with 4 treatments was set up using a fully factorial design with the aim of investigating 

the impact of FYM, lime, cutting date and drainage on the population of s. aquaticus. Three sites 

were used: Kings Sedgemoor (KS), West Sedgemoor (WS) and Southlake Moor (SL). All 

combinations of treatments were set out on each site (16 in total). Site maps and maps of the 

treatment plots can be seen in appendix 4. 

2.2.2 Application 0/ treatments and site management 

Treatments were first applied to the sites after the initial survey in 2004. lime was applied until a 

pH of 6.S was achieved in October 2004, 2006 and 2007 to the limed plots (Fig.2.1). FYM was 

applied to the manured plots at a rate of 20 tonnes per hectare in 2004 and 2005. In 2006 manure 

was applied to the West Sedgemoor manured plots whilst KS and SL were manured in accordance 

to the usual management for the sites. 
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Figure 2.1. Application of liming treatment on Kings Sedgemoor, Somerset 

Early hay cuts (fig 2.2) were undertaken annually on each site from 2004-2006. Early hay cuts 

occurred as close to the 15th June as possible and the late cut as close to the t h July as possible. 

However, the actual cutting date was dependent on weather conditions. It was originally intended 

for the early hay cut plots to receive an early hay cut in 2007 . However, summer flooding on the 

sites prevented this. 
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Figure 2.2. Aerial photograph taken on 27th July 2006 showing early and late hay cut plots of the 

trial area on West Sedgemoor in Somerset (the trial was conducted on the four fields in the centre 

of the photograph; early cut plots appear green due to re-growth following the harvest; late cut 

plots appear brown as the re-growth is yet to start. Pale dots are round hay bales.) 

2.2.3 S. aquaticus population monitoring 

Abundance of s. aquoticus was recorded in five 2m x 2m quadrats per treatment plot. Plants were 

given a size class according to the number of leaves on each plant (1-5, 6-10, 11-15, 15+). They 

were also classed as juvenile (rosette with no flowers) and flowering individuals. These data were 

collected annually in June 2004-2007. In 2006 and 2007 additional surveys were undertaken in 

October to record the abundance of germinating seedlings. The results from the five quadrats in 

each plot were averaged to give plot mean values. Quadrats were taken in the same positions 

Page 143 



(Fig. 3.3) each year so that changes could be accurately monitored. The 2004 data were collected 

before any treatment application, so can be regarded as baseline data. 

Figure 3. 3 Monitoring of S. aquaticus on West Sedgemoor, Somerset 

2.2.4 Experimental sites 

This study was undertaken on the Somerset Levels and Moors. These moors form the largest area 

of lowland wet grassland remaining in Britain, covering approximately 35,000 hectares. The area 

includes 12 sites of specia l scientific interest, including the three sites upon which this study took 

place. As well as being important sites for birds, they are important areas for other fauna and 

flora . The plant communities on these sites are managed as water meadows supporting the 

Cynosurus cristatus-Caltha palustris grassland MG8 (Wallace and Prosser, 2004). The sites were 

selected on the basis that they each held a large S. aquaticus population and their management 

was representative of wet grassland in the area, managed for its nature-conservation interest. 

2.2.5 Statistical analysis 

General linear model 

To determine if the variation was due to the treatments, a Covariate adjusted General linear 

model (GLM)) was undertaken. The general linear model is a generalization of multiple linear 

regression model to the case of more than one dependent variable. that allows one to explore 
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differences between groups while statistically controlling for an additional continuous variable 

(covariate). The 2004 ragwort count data was used as the covariate to reflect the different 

starting pOints, the dependent variable was the mean number of ragwort individuals per quadrat, 

and the independent variables (fixed factors) were taken as the four treatments (lime, manure, 

cut, drain). The assumptions ofthis analysis were that the population counts conformed to 

normal distributions with equal variance and that the covariate was accurate and did not 

correlate with other covariates (but did with the dependent variable) and linearity. Data were log 

transformed in order to meet the assumptions of the analysis. Analysis was undertaken using IBM 

SPSS version19. 

Selection of co varia tes 

The covariant used was ragwort abundance in 2004 (before treatments were applied). Surface 

elevation, baseline pH and plant available phosphorus were also considered. However, these 

either strongly correlated with ragwort abundance in 2004 or did not correlate with the 

dependent variable and therefore did not meet the assumptions of the analysis. 

Repeated measures GLM 

A repeated measures GLM was undertaken for the total June counts from 2005 - 2007. Repeated 

measures GLM links all measurements for the same quadrat over a time period. The main 

advantage of the repeated measures GLM is that it controls for subject heterogeneity 

(Pallant.2001). Analysis was undertaken using IBM SPSS version19.using the procedure general 

linear models, repeated measures. Year was used as the within subjects factor having 3 levels. 

The treatments cut, lime, manure and drain were used as the between subjects factors. Ragwort 

abundance in 2004 was used as a covariate rather than being used as part of the time series. This 

is because different sized quadrates were used in 2004 making the data incomparable. Site SEVa 
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and SEVd (see section on hydrological modelling) were also used as covariates. Data was log 

transformed to meet the assumptions of the analysis. 

Generalised linear mixed model 

Generalized linear mixed model (GlMM) is an extension to the generalized linear model in which 

the linear predictor contains random effects in addition to the usual fixed effects. Generalized 

linear models are a form of linear regression that allows for response variables that have other 

than a normal distribution. Generalized linear models were first introduced by Neider and 

Wedderburn (1972) and later expanded by McCullagh and Neider (1989) (IBM, 2012). The Senecio 

data is "count" data and does not have a normal distribution. Poisson distribution (distribution 

that represents the number of events occurring randomly in a fixed time at an average rate A; 

symbol Po(A). For large n and small p with np = A it approximates to the binomial distribution 

Bi(n,p))better describes data such as these. With data displaying a poisson distribution poisson 

regression can be used to model count data such as this. Poisson regression assumes the 

response variable number of S.aquaticu5 plants. has a Poisson distribution, and assumes the 

logarithm of its expected value can be modeled by a linear combination of unknown parameters. 

AnalysiS was undertaken using IBM SPSS version 19 using the procedure Mixed models, 

generalized Linear. The model used repeated measures for the total Senecio abundance over the 

5 replicates, for the June counts in 2005 to 2007. Target distribution was defined as "Poisson" and 

the link function "identity". Fixed effects were defined as the treatments "cut, lime, manure and 

drain" under "main effects" and 2004 Senecio counts, site, SEVa and SEVd were applied as 

covariates. A factorial model was applied. Data was structured to be separated by year. 
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2.2.6 Monitoring 0/ treatments 

The treatment aim was to change environmental factors and hence influence 5. aquaticus 

abundance. It was vital that the treatments were changing these environmental factors in the 

desired way. They needed to be monitored to determine whether this was the case. 

2.2.7 Water levels and hydrolagical modelling 

Dipwells were used to monitor the water levels. Four dipwells were sunk into each site. Two of 

these were located in the drained areas and two in the undrained areas. Dipwells were positioned 

in the centre of each site halfway between the edge and the central drainage grip; to which side 

of the drainage ditch they were was randomly assigned. Dipwells were l.sm in depth and Bcm 

wide. They were enclosed in a geotextile sock to prevent soil particles from entering the dipwell. 

A metal cap was placed over the dipwell to prevent entry of surface water, precipitation or debris. 

Dataloggers were inserted into the dipwells to record water level and temperature every 4 hours. 

These were placed in two of the dipwells per site; one on the drained plot and one on the un

drained plot. Manual water level readings were also taken for calibration purposes. 

Hydrological modelling 

Hydrological modelling was undertaken to calculate water-table depths at each individual 

quadrat. Water-table depths vary across the plots due to a number of factors including 

topography and distance from ditches (Chapman et ai, 1991; Gowing & Youngs, 1997; Gowing et 

aI., 2(02). The model used was a ditch-bound water-table model (Youngs, 1994) which had been 

previously validated for the Sedgemoor sites. Input variables are meteorological data, ditch

water levels and soil hydraulic properties. The location and elevation of the quadrats in the field 

and the width of any bund bordering the ditch were taken into account. A Leica (RS1200 model) 

GPS was used to record the elevation and position of each quadrat. Meteorological data were 
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obtained from the RSPB, along with ditch data from the Environment Agency. Dipwell data were 

used to validate the model. 

Sum exceedance values SEV's 

Sum exceedance values (SEVs) were calculated for each quadrat to quantify aeration stress and 

drying stress (Gowing et al 2002; Silvertown et al 1999). SEVs use a water-table threshold depth 

that imposes aeration stress on the vegetation due to lack of soil oxygen and another for drying 

stress to plants. Aeration stress is considered to be when the air filled space in the main root zone 

(0-20 em) is less than 10% of the soil volume (Araya et ai, 2010). This is calculated using a soil 

moisture release curve. This was calculated at 0.477m for West Sedgemoor and Kings Sedgemoor 

and 0.42m for Southlake. Drying stress threshold (the water depth where plants show signs of 

stress from lack of water) is defined as the depth that gives a tension of SkPa at the soil surface 

(Henson et ai, 1989); this is calculated using the Richards equation (Gowing and Spoor, 1989). This 

was estimated at 0.493 for both West Sedgemoor and Kings Sedgemoor and 0.487 for Southlake 

Moor. 

The SEV value was calculated as the mean number of weeks per year over a 5 year period that the 

water table depth exceeded these thresholds multiplied by the extent to which the threshold was 

breached (i.e. degree of exceedance in metres). These parameters, unlike mean water-table 

depth, take in to account the duration of time when the water table is having an effect on the 

plants. Mean water table could potentially skew the results as, for example, a short-term large 

drop in water table would reduce the mean water-table depth, but may only indicate a small time 

frame of stress for the plants. 
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2.2.8 Soif chemistry 

pH and plant available P were determined for each plot. Plots were sampled in 2004 for baseline 

pre-treatment data and then again in 2007. 

2.2.9 Field sampling 

Five 8cm diameter soil cores were taken to a depth of 10cm per plot. Samples were taken at the 

corner of each 2 m quadrat so as not to interfere with the vegetation within the quadrat. The five 

samples per plot were then pooled, dried for 48 hours at 40°C and passed through a 2mm sieve 

prior to analysis. Soil samples were thoroughly mixed to ensure homogeneity. 

2.2.10 Plant available phosphorus 

Plant available phosphorus was determined using Olsen's reagent (MAFF, 1986). 5g of dried soil 

was shaken with 100ml of NaHC03 reagent at 120 rpm on a shaking platform for 30 mins at 20°C; 

this solution was then filtered through Whatman 42 filter paper until clear. Every 5th sample was 

replicated and 6 blanks were used. sml of the filtrate was then mixed with 1.5ml of sulphuric acid 

and 25m I of ascorbic-ammonium molybdenate solution. This was then allowed to stand for 30 

mins before analysis with a spectrophotometer at 880 nm. 

2.2.11 Soil pH 

10ml of distilled water was added to 109 of soil and stirred for 30 mins (Thomas, 1996). A pH 

meter was then used to determine pH. This was calibrated using pH 4, pH 7 and pH 9 buffers after 

every 15 samples. Every 5
th 

sample was replicated. 

Page 149 



2.3 Results 

2.3.1Impad a/treatments on soil chemistry 

2.3.1.1 Soil pH 

The addit ion of lime was the only treatment to significantly alter the pH of the plots from that of 

the control plots (Fig.2. 4). Lime raised the mean pH on plots from 5.9 to 6.8. GLM analysis 

revea led th is to be significant (p<O.OOl). pH in 2004 was used as a covariate, however this was an 

insignificant covariate indicating that the pH in 2007 was not affected by the starting pH in 2004. 
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Figure 2.4. Variation of mean pH with treatments 
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2.3.1.2 Plant available Phosphorous 

Both lime and manure significantly increased the amount of available phosphorus (Fig. 2.5) 

(p<O.OOl and p=0.002 respectively) . The highest available P occurred when lime and manure were 

applied simultaneously (Fig. 2.6). This interaction was significant p=O.004. However this 

interaction did not occur in the undrained plots (p=O.037). pH correlated significantly with plant 

available P (p<O.Ol). 
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1.3.1 Hydrological Modelling 

A Pearson two-tailed correlation was undertaken to determine if there was a relationship 

between Ragwort abundance and water-table depth, SEVA and SEVD. There were correlations 

with the 2004 base line data for all these variables. The strongest correlation was with SEVA 

(0.291, P=<O.OOl). There were less significant correlations with SEVD ( -0.148, P=0.21) and mean 

water table depth (-0.201, P=0.002). There were no significant correlations between these 

variables and ragwort abundance in subsequent years. There was also a negative correlation 

between SEVD and the drained treatment (-0.435 P=0.02). 

It was decided that, as the hydrological parameters may have been important for the baseline 

data, a subsequent analysis would be run using them as covariates, along with the 2004 base line 

data, in an attempt to remove any noise from the data relating to them. This subsequent analysis 

is only reported in the results where it has changed the outcome ofthe analysis. 

1.3.3 Impact 0/ treatments on S. aquaticus abundance 

1.3.3.1 Baseline data (1004) 

The 2004 baseline data for S. aquaticus abundance, before the treatments were applied, 

correlated negatively with baseline plant available phosphorus (p<O.Ol) and with elevation 

(p<0.05). There was a significant correlation between ragwort abundance in 2004 and site. There 

was also a positive correlation between pH and plant available P. 
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2.3.3.2 Total abundance of S. aquaticus 

There was considerable annual variation in 5. aquaticus abundance (Fig. 2.7)' with a significant 

increase in 2006 and 2007, p<O.OOl. It should be noted that all subsequent data in this chapter is 

expressed as log 10 (n+1) to meet the assumptions of the GLM analysis. 
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Fig 2.7 Variation in mean 5. aquaticus abundance per 4 square metres (log 10 (n+1) with year. 

Error bars =+/- standard error. 
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2.3.3.3 Impact of early hay cut on S. aquaticus abundance 

Early hay cut significa ntly reduced the total abundance of s. aquaticus (p <0.001) (Fig 2.8). This 

difference first ca me into effect in 2006, two years after the first early hay cut. By 2007 it had 

reduced the abundance f rom an average of 1.0 per 4 square metres in the control plots to 0.46 

per 4 square metres. This was significant in both the June and October counts. This can be seen 

visually in figure 2.9. 
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Figure 2.8. Variation in mean total S.aquaticus abundance per 4 square metres (log 10 {n+1} with 

early hay cut. Error bars =+/- standard error. 
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Figure 2.9. Visual comparison of control plot (above) and early hay cut plot (below) on West 

Sedgemoor. 
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2.3.3.4 Impact of Lime on S. aquaticus abundance 

There was a significa nt decrease in S.aquaticus abundance with lime in 2005 (p=0.016) (fig 2.10). 

However, although there was still a decrease in ragwort abundance, this was not significant in 

subsequent years. 
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Figure 2.10. Variation in mean total S.aquaticus abundance per 4 square metres (log 10 (n+1) with 

lime. Error bars =+/- standard error. 

2.3.3.5 Impact of Manure on S. aquaticus abundance 

Addition of FYM significa ntly reduced the total abundance of S.aquoticus (p <0.001) (fig 2.11) . This 

difference first came into effect in 2006, two years after the first early hay cut. This reduction in 

abundance was not as great as that for early hay cut. In 2007, there was a decrease in mean 

number from 0.9 in the control plots to 0.59 in the manured plots. However this difference only 

applied to the June counts. In October, there was no significant difference in S.oquaticus 

abundance between the manured and contro l plots. 
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Figure 2.11. Variation in mean total S.aquaticus abundance per 4 square metres (log 10 (n+1) 

with FYM . Error bars =+/- sta ndard error. 

2.3.3.6 Impact of Drainage on S. aquaticus abundance 

There was no significant difference in ragwort abundance between the control and drain plots 

except in the October 2007 count, where there was a significant decrease in ragwort abundance 

in the drained plots (p<O.OOl) (fig 2.12). However when SEVD and SEVA were applied as 

covariates, then the "drain" treatment became significant (P= 0.016). However instead of 

decreasing S. aquaticus abundance it increased it. 
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2.3.3.7Interadians between treatments 

There were significant interactions with lime and manure for June 2006 and 2007 (p=0.014 and 

p=0.019 respectively) (fig 2.13). Addition of lime with no manure gave an increase in S.aquaticus 

abundance; however addition of lime in conjunction with manure caused a decrease in 

S.aquaticus abundance. 
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Fig 2.13 Variation in mean total S.aquaticus abundance per 4 square metres (log 10 (n+1) showing 
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The reduction in abundance was at a maximum when treatments were combined. Fig 2.14 shows 

the means for the different treatment combination plots over sites. It can be seen that the 

maximum ragwort abundance was on the control (nil) plots. The lowest abundance occurred on 

the plots with all4 treatments (cut, drain, lime and manure). 
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Fig 2.14 Variation in mean totalS.aquaticus abundance per 4 square metres (log 10 (n+l) with 

treatment combinations. Error bars =+/ - standard error. C=cut, D=drain, L=lime, M= manure. 

2.3.4 The impact af treatments at different life stages 

It is possible that the two life stages of the plant would be affected differently by the treatments. 

Becau se of the two year life cycle of S.aquaticus, responses in juvenile plants may differ from 

those of adults. The data were therefore analysed independently for both juveniles and adults. It 

is worth noting that juveniles in 2005 became adults in 2006 and so forth. 
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2.3.4.1 Juveniles 

The response of the juveniles to the treatments was the same as that of the total S.aquaticus 

abundance. It should be noted that October juvenile counts were always higher than the June 

counts. This is due to the flush of germinating seedlings. As with the total S.aquaticus population, 

early hay cut significantly reduced the total abundance of S.aquaticus (p <0.001) (fig 2.15). There 

wa s a slight decrease in S.aquaticus abundance in 2005, but this difference first became 

significant in 2006, two years after the first early hay cut. This was significant in both the June and 

October counts. 
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Fig 2.15 Variation in mean juvenile S. aquaticus abundance per 4 square metres (log 10 (n+1) with 
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There was a signif icant decrease in juvenile S.aquaticus abundance with lime in 2005 (p=O. 0.036) 

(fig 2.16). However, alt hough there was still a decrease in ragwort abundance, this effect was not 

significant in subsequent years. 
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Fig 2.16 Variation in mean juvenile S. aquaticus abundance per 4 square metres (log 10 (n+1) with 

lime. Error bars =+/- standard error. 

Addition of FYM significa ntly reduced the abundance of S.aquaticus juveniles (p <0.001) (fig 2.17). 

This difference f irst ca me into effect in 2006, two years after the first early hay cut. As with the 

tota l population, this reduction in abundance was not as great as that for early hay cut. Again this 

difference only appl ied in the June counts. In October there was no significant difference in 

S.aquaticus juvenile abundance between the manured and control plots. 
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Fig 2.17 Variation in mean juvenile S. oquoticus abundance per 4 square metres (log 10 (n+1) with 

lime . Error bars =+/- standard error. 

There was no significant difference in juvenile abundance between the control and drain plots 

except in the October 2007 count, where there was a significant decrease in ragwort abundance 

in the drained plots (p<O.OOl) (fig 2.18). 
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As with the total S. aquaticus abundance, there was a significant interaction with lime and 

manure on juvenile abundance (data not shown). 

2.3.4.2 Adults 

There were large fluctuations in adult abundance between June and October counts, with adult 

populations dropping to virtually zero in October. Surprisingly in 2005 there was a significant 

increase in ragwort abundance in the early hay cut plots (p=0.019) (fig 2.19). In 2006 and 2007 

cutting had the opposite effect on the adult population, where early hay cut significantly 

decreased S.aquaticus abundance (p<O.OOl) . 
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The addition of lime significantly decreased S.aquaticus abundance in 2005 (p<0.05) (fig 2.20.). 

However, although there was still a decrease in S.aquaticus abundance over the following years 

this was not significant . 
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Figure 2.20. Variation in mean adult S. aquaticus abundance per 4 square metres (log 10 (n+1) 

with lime. Error bars =+/- standard error. 

Manure had no impact on the adult population in 2005, but significantly decreased it in 2006 and 

2007 (p<O.OOl) (fig 2.21). There was an decrease in adult populations with FYM application in 

2005, although this was not significant. In 2007 and 2008 there was a significant decrease in adult 

populations with manure (p<O.OOl). "Drain" had no significant effect on the adult population (fig 

2.22) 
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Figure 2.21 Variation in mean adult S. aquaticus abundance per 4 square metres (log 10 (n+1) 

with manure. Error bars =+/- standard error. 
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Figure 2.22. Variation in mean adult S. aquaticus abundance per 4 square metres (log 10 (n+1) 

with "drain" . Error bars =+/- standard error. 
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2.3.4.3 Survival of juveniles to adulthood 

The percentage of 2006 juveniles surviving to adulthood in 2007 was calculated . This was 

expressed as the mean number of adults in 2007 as a percentage of the mean number of juveniles 

in 2006; the rat ionale being that the 2006 juveniles would be flowering in 2007. Of course this 

does have its limitat ions as it does not take into consideration the possibility that plants were 

behaving as annuals or biennials, or plants that germinate after June in 2006 went on to flower in 

2007. Neverth eless it would indicate any variation in survivorship between the treatment plots. 

The survivorship of juveniles was highest in the early hay cut plots and was over two times that of 

the uncut. There was no difference between survivorship in the limed plots, but there was a 

decrease w ith manure application and an increase in the undrained plots {fig 2.23}. 
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Figure 2.23 mea n number of adults in 2007 as a % of juveniles in 2006 
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2.3.4.4 Repeated measures general linear model (GLM) 

A Repeated measures GLM was undertaken for the the June S.aquaticus counts from 2005 to 

2006 for the total number of S.aquaticus plants. As with the GLM for the individual years both 

early hay cut and manure significantly reduced S.aquaticus abundance with identical P values of 

p<O.ool and P=O.ool respectively. In the GlM for separate years drainage became significant in 

2007. However it was not significant over the 3 years in the repeated measures GLM. As with the 

GLM there was a significant interaction between lime and manure P=0.037 (appendix 2) 

2.3.4.5 Generalized Linear Mixed models 

Analysis using a generalized linear mixed model (repeated measures) gave identical results to the 

GLM with both cut and manure significantly reducing total S.aquaticus abundance P<O.OOl for 

early cut and P=O.OOl for manure (table 2.1 ) (fig 2.24). The years were analysed separatly using a 

generalized linear model to determine when treatments became effective. As with the GLM early 

hay cut became significant in 2006 P<O.OOl. In contrast to the results ofthe GlM manure first 

became significant in 2005 as opposed to 2006 in the GlM (appendix 2). As with the GlM 

drainage became significant in 2007 when SEV covarients were applied. Lime Significantly 

decreased S.aquaticus abundance in 2005 and 2006, but as with the GLM it was not significant in 

2007(appendix 2). The similarity of the results to the GLM suggests that the log transformation 

used in the GlM analysis did not skew the results. 
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Table 2.1 Generalized linear mixed model results table using poisson distribution. Demonstrating 

t he re lat ionship between the abundance of S.oquoticus and the treatments from 2005-2007. 

Covariates 

95% Confidence Interval 
Model Term Coefficient ~ Std.Error t Sig. 

Lower Upper 
~ 

Intercept 5.262 0.530 9.923 .000 4.214 6.311 
i 

cut -0.952 0.168 -5.665 .000 I -1.284 -0.620 

Lime -0.264 0.160 -1 .657 .100 -0.580 0.051 

Manure -0.525 0.160 -3.276 .001 -0.841 -0.208 

Drain 0.173 0.155 1.113 .268 -0.134 0.479 

Probability distribut ion: Poisson 
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Fig Figure 2.24 Results of generalized linear mixed model repeated measures for total number of 

5.aquaticus plants over the time period 2005-2009 for the treatments. Reduction of S. aquaticus is 

ind icated in orange and increase in blue. Thickness of lines corresponds to significance level 

(thicker the line the more significant) . 
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4 Discussion 

2.4.1 Impact a/treatments on soil pH 

liming significantly increased the pH from a mean of 5.9 to 6.8, but none of the other treatments 

affected it. This indicates that the treatment had the desired effect on soil chemistry. The 2004 

baseline pH was an insignificant covariate, indicating that the end pH was independent ofthe 

starting pH. There was however a slight overshoot and pH was raised an average of 0.3 above the 

target of 6.5. It is possible that too much lime was applied. High pH can affect the availability of 

some nutrients. The availability of P and K is reduced over pH 7. Although the average was 6.8, 

many ofthe plots had pH values over 7. Basic soil conditions (pH> 7.5) cause excessive calcium to 

be present in soil solution which can precipitate with P, hence decreasing P availability. Nitrogen 

availability can also be decreased at higher pH. By overshooting the pH, the effectiveness of this 

treatment may have been compromised. 

2.4.2 Impact 0/ treatments on soil plant available P 

Both the liming and manure treatments increased the amount of available phosphorus, with a large 

interaction between lime and manure. Manure will have the direct effect of adding P. It was 

expected that liming would increase the amount of available P as an increase in pH increases the 

solubility of P making it available to plants. Lower soil pH results in available P being tied up in 

aluminium phosphate. Organic P from the manure requires microbial mineralization to make it 

available and this mineralization is most rapid on well-drained, aerated soils. This increased 

decomposition rate could explain the three way interaction between lime, manure and "drain", as 

decreased microbial activity would prevent full mineralization of organic phosphorous on the 

manured and undrained plot. Mineralization and immobilization occur simultaneously in soil as 
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bacteria use P for their own nutritional needs. If the P content of the organic material is high 

enough to fulfil the requirements of the microbial population. then mineralization will be the 

dominant process. 

2.4.3 Hydrological model 

There were highly significant correlations for mean water-table depth with the 2004 S. aquaticus 

abundance, indicating it was an important driver for ragwort abundance in that year. This was to 

be expected as previous studies have correlated S. aquaticus with wetter areas (McClements 

1992, Forbes, 1977). However there was no significant effect for other years. As 2004 was the 

baseline data before treatments were applied, this might be expected as after the treatments 

were applied, there were many other factors impacting the S. aquaticus populations which could 

be masking anyon-going effect of the hydrological regime. This in itself was interesting as when 

the hydrological parameters were used as covariates in the GlM they did not alter the significance 

of the early cutting or manuring treatments, perhaps indicating that the treatments were robust 

enough to work in a variety of hydrological conditions (or at least those common on the moors). 

For the 2004 baseline data, there was a positive correlation between aeration stress and S. 

aquaticus abundance. This makes sense as Senecio aquaticus is adapted to survive in water logged 

conditions. It has a shallow and much branched root system, allowing it to tolerate these 

conditions. Competition from other plants is likely to decrease as more competitive plants would 

struggle to obtain nutrients in wetter conditions, leading to less competition and possibl'/more 

gaps in the sward for recruitment due to poaching in waterlogged conditions. Previous studies 

have considered aeration stress to be important in reducing the competitive impact of grass on S. 

aquaticus (Bartelheimer et aI., 2010). Unfortunately no baseline data are available on seedling 

recruitment, so it cannot be determined from the data at what life stage the water table is having 

the greatest impact. 
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Both mean water-table depth and SEVD lowered s. aquaticus abundance. This is not surprising as 

s. aquaticus is adapted for more waterlogged conditions (lacking the long tap root of other 

Senecio species). Therefore, there is likely to be an effect from increased competition from plants, 

which are better able to tolerate the drier conditions. 

2.4.4 Annual variation in S. aquaticus abundance 

There was a large increase in S. aquaticus abundance from 2004-2007 in the controls. This 

increase was universal across the control plots indicating that it was not a local effect. large 

annual fluctuations in S.aquaticus populations are common so this result was not surprising. 

2.4.5 Population structure 

The October counts always had higher numbers of plants than the summer counts. This was 

because there was a large flush of germinating seedlings at this stage. Survivorship of these 

however was low, which can be seen from the reduction in population from the October counts 

to the summer counts the following year. Adult plants in October were extremely rare. This was 

because most of them had completed their life cycle and died by then. 

2.4.6 The impact of early hay cut 

Early hay cut dramatically reduced S. aquaticus abundance and was the most effective of the four 

treatments at doing so. This was an interesting result as previous studies (McClements, 1992; 

Forbes, 1977) have correlated frequency of cutting with reductions in S. aquaticus abundance. It 

is perhaps likely, in light of these results, that it was not so much the frequency of the cut, but the 

timing of the cut that caused the reductions in these studies. It was, however, a slightly surprising 
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result, as studies on S. jacobaea have revealed that most plants of that species can recover from 

the cut - perhaps their different root structure is key? 

There are three possible mechanisms for the action of early hay cut. The first is that the early hay 

cut was killing and removing the plant before it set seed, therefore reducing the seed bank for the 

following year. There is a suggestion that S. aquaticus plants will attempt to flower again after a 

hay cut, albeit at a reduced size, which contradicts this theory, as even a small quantity of seed 

could maintain the population. However, visual observations in the field indicated that while this 

did occur, it was relatively uncommon. For this mechanism to explain the population decline 

would depend on S. aquaticus having a fairly short lived seed bank. However, little research has 

been done into the S. aquaticus seed bank. McClements (1992) found that S.aquaticus has a 

relatively large seed bank and suggested this was long lived. However, other studies which have 

been undertaken suggest the seed bank is transient (Thompson et 0/, 1996,) indicating the seeds 

have a very short longevity. It is indeed possible that both are correct and that it has a large, but 

short lived, seed bank. More work needs to be carried out to determine the longevity of the seed 

bank if we are to better understand this mechanism. 

The second possibility is that the early hay cut was having a direct effect by causing mortality to 

the plants. It is possible that the young plants had not accumulated enough reserves to re

establish after defoliation and the cut was causing direct mortality. This scenario seems unlikely as 

the survivorship of juveniles to adulthood was much higher in the early cut plots than the late 

plots, indicating very little mortality. 

The other possibility is that the early hay cut caused changes to the vegetation structure which 

were unfavourable to S. aquaticus, but favoured more competitive species, causing competitive 
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exclusion or changing vegetation structure and making a more closed sward, which was more 

unfavourable for germination. It is believed that an early hay cut favours perennial species, which 

are more likely to form a closed sward (Tow and Lazenby 2001). The impact ofthe early cut 

treatment on the sward composition was investigated in Chapter 4. 

The fact that the treatment only became effective two years after the first early hay cut and that 

the survivorship of S. oquoticus plants from juveniles to adulthood was relatively high in the early 

cut plots, indicates that the treatment was acting at the germination / recruitment stage and not 

at a later stage in the plant's life. This also makes the scenario of the early cut causing direct 

mortality unlikely, as the survivorship of juveniles to adulthood was much higher in the early cut 

plots than the late plots. The finding that the treatment decreased the population of juvenile 

plants suggests that it was having an effect at this stage rather than later in the life cycle - perhaps 

by reducing seed bank or reducing the number of available gaps for germination. The high survival 

rate of juvenile plants to adulthood in the early hay cut plots can probably be attributed to the 

low initial abundance of plants in these plots. This might indicate that intraspecific competition is 

relatively important in terms of ragwort populations and self-thinning common. 

It would be expected that the first effect on adult abundance for early hay cut would be seen in 

2006 as this was two years after the seed bank would have been first affected in 2004. However, 

it would also be expected to see an accompanying decrease in the 2005 juvenile population, 

which did not occur. This may be explained by some ofthe plants behaving as annuals, supported 

by the finding of a significantly larger population of adult S. oquoticus in the control plots than 

there had been juveniles in 2005. The increase in abundance of adult S. oquoticus in the cut plots 

in 2005 is surprising. It is important to note, however, that these plants germinated and 

established in 2004 before the treatments were applied, so would be unaffected by any reduction 

in seed bank. One possible mechanism could be that of decreased intraspecific competition if 
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juveniles had decreased with early hay cut the following year. However, there was no significant 

difference in the abundance of juveniles in 2005 between the early and late cut plots. It is possible 

that early hay cut was having some other effect on the survival of S. aquaticus juveniles to 

adulthood. For example, it may have had the effect of reducing interspecific competition, but 

despite this reduction in competition a decrease in abundance due to decreased seed bank may 

be seen. 

2.4.7 The impact of manure application 

FYM significantly reduced S. aquaticus abundance, although the effect was not as marked as that 

of early hay cut. It is likely that the addition of FYM increased limiting nutrients which favoured 

more competitive grasses, which outcompeted the S. aquaticus. This fits with previous work by 

McClements (1992), where a negative correlation between P availability and S. aquaticus 

abundance was found, although other nutrients were not studied. It is not clear from the data 

what the limiting resources were, e.g. nutrients or light. Available P was significantly higher on 

manured plots than the control plots. However, there were similar levels on the manured plots to 

the limed plots, which did not significantly reduce ragwort abundance. This perhaps suggests that 

other nutrients, such as Nand K, are limiting. Unfortunately soils were not analysed for these 

nutrients. 

The literature suggests that the life stage when S. aquaticus plants are most susceptible to 

competition is when they are germinating (Wardle 1987). This does not however appear to be the 

case in this study. The October counts took place just after S. aquaticus germination and results 

for the juvenile population revealed there was no significant reduction in S. aquaticus abundance. 

This indicates that the competition was acting at a later stage in the plant's life. There was a 

decrease in survivorship from juvenile to adulthood in the manured plots, which would support 

this theory. 

Page I 75 



The reduction in the s. aquaticus abundance did not occur until 2006, two years after the first 

manure application. If the competition was acting on the late stage plants, then it might have 

been expected to act quicker. However, nutrients in the manure are not instantly available to the 

sward as they require mineralisation by bacteria first. One would therefore expect a lag time 

between the availability of the nutrients and changes in the vegetation structure, which could 

result in a reduction in S. aquaticus. 

2.4.8 The impact 0/ Lime application 

Lime significantly reduced s. aquaticus abundance in 2005, but interestingly did not have an 

impact in subsequent years. However there was a significant interaction between liming and 

manuring where S. aquaticus populations were reduced more in the lime and manure plots than 

in the manured plots alone. There are a number of mechanisms that could explain this result. The 

lime application in the first year could have caused an increase in pH, which subsequently caused 

an increase in available P from the inorganic reserves. It is possible that this was then depleted, 

causing less available P in the following years. This would account for the interaction on the limed 

and manured plots, as P would be replenished from mineralisation ofthe FYM.lt is also possible 

that the pH became too high in subsequent years. The target pH was 6.5 and this was overshot in 

some plots where it was over 7 in 2007. This is above the optimum for P availability as well as K. It 

is possible that the 2005 decrease corresponded to the right conditions for available P, but then in 

subsequent years it became less available because the pH was too high. 

Alternatively, it is possible that P was not the limiting nutrient. The mean P concentrations were 

similar for both lime and manure plots and the fact that manure showed a significant reduction in 

S. aquoticus abundance whilst lime did not, perhaps suggests that P was not the limiting nutrient. 
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It is possible that P was limiting in 2005, but then as P levels increased something else became 

limiting. This may not have occurred in the manure plots because it may have been replaced by 

nutrients from the FYM. There was no difference in survivorship in limed plots. However, this 

would not be expected as the % survival was calculated on the 2006 to 2007 data after any 

significant effects had ended. Acidic soils could also lead to an accumulation of litter and it is 

possible that a decrease in litter after pH increase may have led to increased gaps for 

germination. 

2.4.9 The impact of Drainage 

In the initial analysis the effect of the drainage treatment was not significant. There were some 

problems with the experimental layout, such that one of the drained plots was significantly wetter 

than its corresponding undrained one due to the allocation of plots to treatment at random. 

These hydrological variations within a block due to microtopography made comparisons difficult. 

A hydrological model was therefore used to simulate the actual water regime at each sampled 

location. When SEVA, SEVD and water-table depth were used as covariates, drainage became a 

significant factor in explaining ragwort abundance. However the direction of this result was 

unexpected in that ragwort abundance was significantly greater in guttered plots. The lack of 

reduction for the "drain" treatment was surprising as previous studies have correlated S.aquaticus 

with wetter areas (McClements 1992, Gowing et al., 2002). SEVs and water-table were 

significantly correlated to the baseline 2004 data which indicates that reducing water table should 

decrease S.aquaticus and suggests that the gutters were not functioning correctly or achieving 

the necessary decrease in water-table. The explanation for the increase in S. aquaticus abundance 

is perhaps linked to the gutter digging creating disturbance within the plots that gave rise to 

regeneration sites for the ragwort seedlings. 
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The "drainH treatment did decrease the abundance of germinating seedlings in 2007. In the 

summer of 2007, there was heavy rain and summer flooding occurred across the sites, which did 

not occur on any of the other years. It is possible that the resultant waterlogging during the 

summer accounted for the significant effect of the "drain" treatment in this year alone. 

Vegetation die-back and decreased competition may have occurred with the summer floods. An 

increase in waterlogging may also have led to an increase in poaching during the aftermath 

grazing, creating more gaps for germination. This result does not however fit with the results for 

the manure application, which suggests that competition is relatively unimportant for germinating 

ragwort seedlings and more so later in the plant's life. Another implication ofthe drainage was in 

allowing the early hay cut to take place. In wet summers, such as in 2007 and 2008, it was not 

possible to get on to the fields to carry out the early hay cut as they were too wet. Farm 

machinery would get stuck and even if it were possible to do the cut, poaching and compaction 

from the machinery is likely to have had detrimental effects on the site and therefore potentially 

increase S.oquoticus abundance. 

2.4.10 Conclusions 

The early hay cut and application of FYM were effective at significantly reducing S. oquoticus 

abundance and are therefore potential candidates for a new method of S. oquaticus control. The 

early hay cut gave the biggest reduction. The FYM did not reduce abundance as much, but its 

effectiveness was increased when used in conjunction with lime. The effect of lime was only 

significant in the first year and the "drain" treatment had no significant impact on S. oquoticus 

abundance. The water table modelling suggests that the water table was an important factor for 

S. oquaticus abundance, although it was unclear how effective the gutters were at increasing the 

water-table depths. 
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The effects of the four treatments appeared to be cumulative and the lowest ragwort abundance 

occurred in plots receiving all four treatments. It may therefore be desirable to combine 

treatments to give a maximum reduction in the population. It is not clear what mechanisms cause 

the reduction for each treatment. The evidence suggests that the early hay cut caused an effect at 

the beginning of the life cycle and the FYM later on in the life cycle. It is essential to understand 

these effects when designing the control method and there is a need for further investigation. It is 

however critical that these treatments do not have a negative impact on other species on the site 

and this will be discussed in Chapter 4. 
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Chapter 3 

The life history of S. aquaticus 

This chapter focuses on understanding the life 

history of S. aquaticus in order to understand the 

mechanisms and effectiveness of the treatments. It 

predominantly uses mesocosm and pot experiments. 

Life span, seed-bank dynamics and the impact of 

different cutting dates on survival and seed 

production are investigated along with the effects of 

different competition intensities on productivity for 

both germination and adult plants. 



Chapter 3 The Life history of Senecio 
aquaticus 

3.1 Introduction 

Although extensive research has been undertaken in to s. jacabaea, very little is known about the 

ecology and life history of s. aquaticus. It is vital for the field trial to understand this in order to 

comprehend the mechanisms for the reduction in S. aquaticus abundance in response to some of 

the treatments investigated in this study. 

3.12 Life cycle and survivorship 

Although s. jacobaea is normally a biennial, it has been demonstrated that it can become a 

perennial under certain conditions. One study suggests that 53% of s. jacobaea plants regenerate 

rosettes from the crown after flowering (Forbes 1977). It is unclear whether S. aquaticus can re-

flower and survive after flowering, but if it can, this has implications for management practice. It 

has also been reported (Forbes 1977) that S. aquaticus can behave as an annual under certain 

conditions. It has been suggested that this is size related (Forbes 1977). A population study was 

therefore undertaken in the field to deduce the life cycle and different strategies of s. aquaticus 

and whether this was size dependent. To ascertain this, individual plants were tagged and 

followed from seedling to death. 

3.13 The impact of competition on S.aquaticus 

FYM application may reduce S. aquaticus abundance by making conditions more favourable to 

competitor species leading to competitive exclusion. Although the field trial indicated that 
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competition was probably occurring later in life, the mechanism for competition was not clear. It 

would be useful to know whether it is competition for nutrients or light that is most important 

and therefore make deductions about what type of sward characteristics it would be desirable to 

achieve. For example, if light competition is important, it may be desirable to achieve a tall sward. 

Studies on S. jacobaea found that pasture with long grass had no seedlings as did short but 

continuous turf (Cameron, 1939), but no such studies have been undertaken for S. aquaticus. 

Plant competition is one ofthe key drivers in explaining plant community structure and niche 

separation. Plants require a small number of essential resources at the same locations and same 

time therefore competition for these resources frequently occurs. Such direct competition would 

be expected to result in the exclusion of but the strongest species, yet frequently multiple species 

competing for the same resources co-exist (Grime 2001). Determining whether the reduction of S. 

aquaticus abundance (presumably through competitive exclusion) in the Manure treatment 

demonstrated in chapter 2, is a result of root or shoot competition is important and management 

practices could be adapted to support and increase the mechanism of competition i.e. by 

maintaining a tall sward if light competition proved most important. 

Plants compete simultaneously for below ground resources i.e. nutrients and water and above 

ground for light. Many studies have tried to separate these types of competition. One of the 

earliest attempts this was Donald in 1958, who used barriers to exclude root and shoot 

competition in a fully factorial design and found root competition to be most intense. 

Subsequently many other attempts to separate root and shoot competition have been made 

(Cahill, 1999, Casper, 1997 Coomes and Grubb,1998). The relative importance of root versus 

shoot competition appears to vary with species and communities. However, the majority of 

studies demonstrate root competition to be more important than shoot competition. A review by 

Wilson (1988) indicated root competition was more important in 33 out of 47 cases reviewed. In 

the other 14 cases, shoot competition was more important. Many experiments show a significant 

interaction between root and shoot competition with plants undergoing both root and shoot 

completion having a larger reduction in biomass than the sum of the reduction with just root or 
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shoot competition (Clements ,Weaver and Hanson 1929, Donald,1958, Wilson 1988) although 

other experiments show no interaction (Wilson 1988) 

Competition for light is considered to be asymmetrical as there is a positive feedback where large 

individuals can overtop smaller ones shading them out. They therefore utilise a disproportionate 

amount of light, they then can grow even bigger increasingly shading out their neighbours. Root 

competition on the other hand is considered to be size symmetric, with the quantity of resources 

captured being proportional to the size of the root system (Weiner 1986, Lamb et al 2008). Shoot 

competition is therefore considered most important for competitive exclusion (Weiner 1986, 

Lamb et al 2009) and only shoot competition is likely to reduce diversity (Newman, 1973, Bennett 

and Cahill, 2012) and therefore maintaining a tall dense sward may be important in any attempt 

to control S. aquaticus by competitive exclusion. 

There is currently some debate over the role of root and shoot completion across environmental 

gradients. Grime, Tilman and Newman all having different theories. Grime hypothesises that 

competition and competitive exclusion is an important factor in explaining community 

composition only in areas of high productivity. He argues that plant stress is a much more 

important factor at low productivity (Grime 1973, 1977 and 1979). Newman argued that 

competition was important at both high and low productivity and competition switches from root 

to shoot as nutrients increase (Newman, 1973). Tilman on the other hand suggested there would 

be no variation in intensity of competition across a productivity gradient and thought competition 

would be an important factor in influencing community structure at all levels of the gradient. 

(Tilman 1982 and 1988). There is experimental evidence to support both the theories ofTilman 

and Grime and it is not yet clear which, if either, is correct (Bennett and Cahill, 2012). 

The importance of root and shoot competition in S. jacobaea and S. aquaticus was investigated by 

Bartelheimer et al. in 2010. A fully factorial design was used to investigate the importance of root 

and shoot competition in the two species across gradients of water and nutrient supply. It was 

found that root competition was far more important than shoot competition in determining plant 
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biomass and seed production. Competition was strongest when nitrogen and water were higher. 

This supports Grime's theory that competition increases with supply of resources. 

Several methods have been used to experimentally separate root and shoot competition. Most 

commonly used are the "divided pot technique", "row technique" and the "target technique". In 

the divided pot technique vertical partitions are used to divide above and below ground 

competition in a pot. A limitation of this technique is that it often creates artificial competition for 

light from the artificial barriers used to contain the "shoots". The row technique uses rows of 

plants separated below and above ground with artificial partitions. This technique lends itself to 

large scale agricultural trials, but is limited when explaining competition in wild plants as wild 

plants do not grow in rows. In the target technique, a "target plant" is surrounded by a circle of 

competing neighbours whilst using partitions to create different combinations of root and shoot 

competition. This technique has the advantage that it is more similar to the way plants grow in 

natural vegetation. However, a limitation of the target technique is that there is often no control 

for the effects of the root/shoot exclusion apparatus. It is however considered a much more 

realistic method of investigating root and shoot competition (McPhee and Aarssen, 2000). Many 

different measurements can be used to measure the effects of competition in plants such as size, 

weight and seed production. Root to shoot ratio may be a useful measure in determining 

competition in plants. Optimal partitioning theory states that plants respond to changes in the 

environment by shifting resources to acquiring the limiting resource i.e. if nutrients are limiting 

then the plant will have a higher root shoot ratio and if light is limiting vice versa (Bonifas and 

lindquist, 2006) 

Defining the importance of root and shoot competition in S. aquaticus is essential to understand 

the competitive exclusion occurring in Chapter 2. An experiment was therefore undertaken to 

investigate the impacts of root and shoot competition on S. aquaticus individuals to deduce which 

has most effect on survival and fecundity. 
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Density of sward may also be important for ragwort control. It would be useful to know what gap

sizes marsh ragwort requires to germinate and become established in and also how this impacts 

subsequent survival. As previously mentioned, sward density has been correlated to the 

occurrence of S. aquaticus (McClements 1992) and it has also been closely linked to poor pasture 

management, where gaps in the sward allow it to establish. It was found that very open swards 

had higher numbers of S. aquaticus than closed swards (Forbes, 1976, McClements 1992). In a 

similar study (McClements 1992) fields were scored on percentage bare ground. It was 

demonstrated that there was a higher incidence of S. aquaticus in areas where a high percentage 

of bare ground existed. Several studies have found similar results regarding competition with S. 

jacobaea. Competition between S. jacobaea and pasture grasses occurs at all stages of its life. It 

has been demonstrated that the time S. jacoboea is most venerable to the effects of competition 

is early in its life. S. jacoboea requires gaps in the sward to germinate and so a continuous sward 

inhibits germination and probably establishment (Wardle, 1987). 

No previous work has been done for germination and survivorship for S. aquaticus, but a study 

has investigated the effect on S. jacobaea. This study indicated that gap size was important for 

germination with larger numbers of seedlings germinating in larger gaps. There was no difference 

in survivorship with gap size. This was attributed to intraspecies competition between S. 

aquaticus plants (Watt, 1987). It is not clear however what density of sward would need to be 

achieved to inhibit growth and at what stage of a plant's life gaps in the sward are most 

important. An experiment was therefore set up to investigate the impact of different gap sizes on 

S. aquaticus individuals and how levels of competition affect them. It had originally been planned 

to do this under various combinations of root and shoot competition, but as, in a pilot study, light 

competition was demonstrated to have little importance (see below), the role of root competition 

was investigated instead. 
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3.14 Mechanisms far early hay cut 

The early hay cut significantly reduced ragwort abundance in subsequent years. However the 

mechanism for this was not clear from the field experiments. Possible mechanisms include: 

• The early cut reduced the seed bank by cutting the plants before they had time to set 

seed or through removing resources from the plant causing decreased fecundity. 

• It could have caused direct mortality due to plants failing to capture enough resources to 

recover from defoliation. 

• the early hay cut caused changes to the vegetation structure which were unfavourable to 

S. aquaticus germination; for example by favouring more competitive species and causing 

competitive exclusion as a result of a more closed sward. 

As changes to vegetation structure and species composition were investigated in the field 

(chapter 3), it was decided to focus this part of the study on seed production and the direct 

effects of an early cut on mortality, fecundity and life history of S. aquaticus. 

In order to deduce how the early hay cut was impacting S. aquaticus abundance, it would be 

beneficial to find out at which life stage(s) the early cut had its effect. The survivorship study in 

chapter 2 showed that there was high survivorship from juvenile to adult in the early cut plots, 

indicating that this treatment was impacting the population at a different stage. However, due to 

small numbers of plants in the early plots this needed to be confirmed. Experiments were 

undertaken on the effect of cutting times on both adult and juvenile populations. The date for the 

early hay cut (15th June) was chosen on the basis that it was the more traditional time for hay 

cutting before the Conservation Bodies put it back to July. Although the field trial demonstrated 

that this cutting date effectively reduced ragwort abundance, it may not necessarily be the most 

effective method and further studies are required. 

Although S. aquaticus is a biennial, it can also become perennial. It has been demonstrated that S. 

jacobaea is more likely to become perennial if the plant is damaged due to cutting or grazing prior 
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to flowering (Otzen, 1977; Harper and Wood 1957). Studies in s. jacobaea show that continuous 

deflowering caused plants to regenerate and grow in subsequent years. Cutting whilst the plant 

was in flower killed a small number of individuals. However there was no mortality from cutting at 

other stages and in fact growth was stimulated from the crown and root buds (Pool and Cairns 

1940). S. jacobaea can remain truly perennial in closely mown swards (Harper and Wood, 1957). 

At present, there has been no comparable work on S. aquaticus. If s. aquaticus does behave in 

this way, the early hay cut could potentially increase the ragwort problem in subsequent years: 

i.e. if the plant is cut before it sets seed it could survive until the next year and seed again. With 

this extra growth year, the plant could potentially produce a larger seed crop than it would if it 

had flowered in its first year. 

Studies on S. jacobaea have shown that seed production can be affected by both time of cut and 

degree of defoliation. Cut plants can set seed 10 weeks later than uncut plants. The cut plants can 

have up to 50% more stems than the uncut (though these are smaller in diameter). It was found 

however that cutting does reduce seed production. Seed yield was reduced to 34.7% by cutting in 

early June (Harper, 1957). It has also been demonstrated that removal of all the leaves reduced 

seed crop by 10%. Removal of flowering heads reduced seed crop by 60% and removal of flowers, 

leaves and stem apex killed the plant (Cameron, 1935). However, if the plants were cut too late to 

flower in the same year, they survived until the next year and seed production increased. This 

demonstrates that for s. jacobaea timing of cut and level of defoliation is crucial and cutting at 

the wrong time might actually benefit seed production (Cameron, 1935). It would therefore be 

very useful to determine whether, and under what circumstances, s. aquaticus behaves like a 

perennial and what implications defoliation has on future seed production. An experiment to 

investigate the impact of time of cut on the survival and fecundity of adults and juveniles was 

undertaken. The advantage of doing this under controlled conditions was that subsequent seed 

production could be monitored. 
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3.15 Seed bank analysis 

Understanding the seed bank dynamics for S. aquaticus is essential, particularly with regard to 

longevity. This could help indicate whether the treatments will be successful, and how long 

treatments will need to be implemented for. little research has been done into the s. aquaticus 

seed banks. McClements (1992) found that S.aquaticus has a relatively large seed bank and 

suggested this was long lived. However other studies suggest that the seed bank is transient 

(Thompson et ai, 1996). It is indeed possible that both are correct and it has a large, but short 

lived, seed bank. The implications for the study, if this is correct, are that the chances of the early 

cut being successful are greatly increased and the need for repeat treatments would be reduced. 

However these latter studies appear to be small scale and have been undertaken on sites where 

numbers of parent plants were small and therefore lack statistical power. 

There have been several studies concerning the seed bank for S. jacobaea. S. jacobaea seed 

requires light to germinate and does not do so unless it is on or just beneath the soil surface. 

Some seeds can remain viable if buried deep enough under the soil surface (Thompson and 

Makepeace 1983). It is reasonable to assume S. aquaticus has similar germination mechanisms. 

There are however conflicting reports regarding how long buried S. jacobaea seeds remain viable. 

Pool and Caines (1940) demonstrated a 95% loss of viability within the first two years. Another 

study demonstrated that viability changed at depth of burial. Seed buried at 0-2cm were viable 

for 4-5 years, whereas those below 4 cm remain viable for 10-16 years (Thompson and 

Makepeace 1983). Field studies cited in Thompson et ai, 1996 have found the S. jacobaea seed 

bank to be anything from transient to long-term persistent. Although these studies do not give 

any information about ragwort seed longevity, they indicate that the seed bank dynamics vary 

dramatically with site. This could be due to numerous factors including the number of parent 

plants and the number of seeds that get buried, possibly indicating land management is an 

important factor. It is important when investigating the seed bank of s. aquaticus to sample 

several sites with similar management and ragwort population to the study sites. 

Page 188 



It was not possible, given the time available, to do a full longevity study on S. oquoticus seed 

banks. Germination of 5. oquoticus occurs in the autumn and spring and seed set occurs in July. If 

the seed bank is transient, it would be at its highest just after seed set and greatly depleted or 

zero just before seed set. If the seed bank were long lived, it would be expected that there would 

be little difference in seed bank between the two sampling dates. The seed bank was sampled at 

these times to ascertain its longevity. 

3.2 Methods 

3.2.1 Life history field 

Aim - to determine the life cycle and survivorship of S. oquaticus and ascertain whether this is 

size dependent 

Thirty individual plants were tagged over the control and early hay cut plots (15 adults and 15 

juveniles). Coloured bendy straws were inserted in the soil around 2 cm from the base of the 

plant. Three straws were used per plant to ensure that the tagged plant could be accurately 

determined in following years in the event that straws were lost from hay cutting and cattle 

grazing. On tagging, the plants were classed as juveniles (rosettes) or adults (flowering) and a size 

class was assigned based on the number of leaves on the plant. (1-5,6-10, 11-15, 16-20). Different 

coloured drinking straws were used for each category and size class. It was therefore possible to 

see how individual plants had changed. The position of the plants was then recorded using total

station survey apparatus (Leica, T705) to make it possible to find them in subsequent years (it was 

still necessary to tag the plants as S. oquoticus is gregarious and it would be difficult to determine 

which plant was recorded using the total station alone). Plants were first tagged in June 06. They 

were then re-found and measured in October 06, June 07 and October 07. Plant survival and size 

class were recorded. 
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3.2.2 The importance 0/ root and shoot competition to S. aquaticus 

Aim - to ascertain the relative importance of root and shoot competition to S. aquaticus 

A fully factorial design was set up to investigate the impact of root and shoot competition on 5. 

aquaticus. Plants were subjected to either root competition, shoot competition or root and shoot 

competition. The "Target technique" was used as explained in section 3.1. Six seedlings per 

treatment were sown in May 2006 into separate 16 cm diameter gaps in an established Lolium 

perenne sward in a mesocosm. Created gaps were 2S cm from the edge of the mesocosm and 2S 

cm from each other to ensure no edge effect or interference from each other. Seedlings were 

germinated in a controlled environment chamber at 20De and then transplanted into the sward. 

Treatments were allocated randomly to each plant. The layout of the mesocosms are shown in 

figure 3.1 
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S Control RS S 

RS RS Control R 

Figure 3.1 Layout oftreatments in mesocosm: R = root exclusion, S = shoot exclusion, RS = Root 

and shoot exclusion, Control = no root or shoot exclusion. 

3.2.2.1 Mesocosm design 

The mesocosm was connected to a controlled water system, which maintained the water level at 

15 cm below the soil surface. A reservoir tank fed a controlled float chamber and then the 

mesocosm. The water level in the mesocosm was thus controlled by a ball valve giving a constant 

head. When evapotranspiration from the mesocosm occurred, the reservoir tank refilled the float 

chamber and thus the mesocosm. When precipitation caused the water level in the mesocosm to 

rise, the water flowed back in to the control float chamber, from which it was lost via an overflow 

pipe. 
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To ensure that the water was able to flow freely throughout the mesocosm, a network of 

perforated pipes allowed water flow across its base. This was then covered in gravel. A weed 

exclusion membrane was then placed over the gravel to prevent the soil from entering the gravel 

layer. A 20 cm layer of sand was then placed over this and then a 20 cm layer of 1:1 top soil and 

sand was used as a rooting medium. 

' .. 11111111111' ..... 1111111 .. 1111 ... 11 ........ 1111111111111111111111111111111'11111,1"1111111"'11111"111111111111111'"11111111111"'111111111111111111111111111., ... 11 • .,1 ... 111111 .. 11 ...... "1111111111 
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Figure 3.2 Mesocosm design showing a layer of compost over sand over gravel. The black lines 

represent the plastic cylinders for excluding root competition and plastic-mesh cones to exclude 

light competition from neighbouring grass plants. 

Exclusion of root competition was achieved using a 16 cm plastic tube with 1 cm holes drilled at 

10 cm intervals and covered in root exclusion fabric to allow free flow of water, but preventing 

roots from entering. The tube was then and sunk into the mesocosm (Fig 3.2). Shoot exclusion 

was achieved using a 0.5 cm gauge mesh cone. The cone was 16 cm at the base and radiated out 

at an angle of 30 degrees to a height of 30 cm. This prevented adjacent shoots from shading the 

target plants (Fig. 3.2) 
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Data collection 

In September 2007, two diameter measurements were taken at right angles for each rosette (Wl 

and W2) (Fig 3.3) . The number of leaves and height ofthe plants were also recorded. 

Fig 3.3 diameter measurements used to determine size of plant 

Analysis 

one-way GLM was undertaken to ascertain ifthere was a significant difference between Wl and 

W2 for the different levels of competition. Data was log transformed to meet the assumptions of 

this analysis. 

3.2.3 The impact of gap size on survival and fecundity of s. aquaticus under root and shoot 

competition 

Aim: To determine the importance of gap size under different levels of competition to s. 

aquaticus 

A fully factoria l design was set up to determine the impact of gap size under different competition 

scenarios (root competition/no root competition) on 5. aquaticus. Plants were grown in artificially 

created gaps in an established MG8 sward in mesocosms and subjected either to root 

competition or not. Three gap sizes were used: 5 cm, 16 cm and 25 cm. The 25 cm gap size was 
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chosen based on field observations which revealed that this was generally the largest gap size 

created in a field (usually by a cow pat). 

Two large mesocosms were set up as in the experiment above except the gravel layer was deeper. 

The soil surface was less than 10 cm below the top of the container to ensure that there was no 

shading from its sides. A float chamber fed a central pipe which continuously supplied the 

mesocosm with water. This was covered in root-exclusion fabric to prevent roots or soil particles 

from entering the pipe. 

A sward was established in the mesocosm in August 2006. The seed mix was purchased from 

Emorsgate Seeds and aimed to replicate the MG8 community (Rodwell, 1991). The proportions of 

seed were in accordance with the recommendations of Gilbert (2000). Poa trivialis was not 

available, so other grass species were increased proportionally to make up the deficit. The 

composition used was A. odoratum, F. rubra and H. lanatus at a ratio of 2:2:1. The top soil used 

was not sterilized due to the quantity involved, so the mesocosms were weeded regularly with 

particular care to remove any legume seedlings rapidly before they could contribute to the soil 

nitrogen availability. 

In March 2007, gaps of sizes 5 cm 16 cm and 25 cm were artificially created in the sward, 20 

replicates per gap were created. For each gap, half were fitted with root exclusion tubes of the 

same diameter as the gap size. This gave a total of 5 replicates per gap size per competition 

treatment. The structure of the root exclusion tube is explained above. Gaps were arranged so 

that they were 25 cm apart and at least 20 cm from the edge of the container to ensure even 

competition. The position of the gaps and level of competition were randomly allocated. 

Seedlings which had been germinated in the greenhouse and then hardened off were then 

transplanted into the gaps. Two seedlings died shortly after transplantation and these were 

replaced. 
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Data collection 

Plants were then left to grow until September when their WlxW2, height and number of leaves 

were recorded. Original seedling size was recorded as a covariant to remove any variation caused 

by initial size at planting. 

The whole plant, including the roots, was then carefully harvested to ensure no loss of plant 

material. Roots were then washed in the laboratory to remove all traces of growing medium. The 

plants were then oven dried at 40°C for three days. Dry root, shoot and total biomass was 

recorded for each plant. The shoot to root ratio was then calculated for each plant a general 

linear model was undertaken to ascertain ifthere was any significant difference in biomass or 

root: shoot:ratio for the different gap sizes and levels of competition. 

3.2.4 The impact 0/ gap size and roat campetition on germinating s. aquaticus seedling 

Aim - to determine the impact of gap size and competition type (root vs no root) on the 

germination of S. aquaticus 

A fully factorial design was set up to investigate the impact of gap size and degree of competition 

on the germination of S. aquaticus seedlings. Seedlings were germinated in 4 gap sizes in an 

established MG8 sward (0, 5 em, 10 cm,16 cm,25 em) under two levels of competition - with or 

without root competition. Mesocosms and gap sizes were set up as in section 3.23. On 3rd 

September, thirty S. aquaticus seedlings were sown into the gaps in the mesocosms at the 

different levels of root and shoot competition. Seeds were then left to germinate for 3 months 

and the number of seedlings that germinated for each gap was recorded. A general linear model 

was used to assess the impact of gap size and level of competition on the germinating s. aquaticus 

seedlings. Data were log transformed to meet the assumptions of normality. 
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3.2.5 The impact af Cutting date an adult S. aquaticus plants 

Aim - to determine the effect of cutting date on the survival and the production of viable seeds 

in s. aquaticus 

In order to investigate the effects of cutting date on S. aquaticus survival and fecundity, Senecio 

plants were subjected to different cutting dates. In March 2007, juvenile S. aquaticus plants were 

collected from the field. Collection was done in early March, as soon as the flood waters 

retreated, to ensure that the plants were in their second year and should therefore flower in the 

summer. Collection was also easier when the water table was high and soil was saturated. Plants 

were carefully dug up ensuring roots were not damaged and then taken back to the lab where 

they were re-potted within 48 hours of collection. Plants were planted into a mixture of 1:1 sand 

and moss peat. Plants were randomly assigned into 6 blocks. WlxW2, the height and number of 

leaves were recorded and used as a covariate in subsequent analysis to control for any natural 

variation in plant size. Seven plants per block were then randomly allocated to each of 5 cutting 

dates at two week intervals (OS/05, 19/05, 01,06 16/06, 30/06, 11/07 and a control date with no 

cut.) 

On the designated cutting date, plants were defoliated to 3 cm above soil level to mimic a hay cut. 

Any seed heads were collected and counted. Wl x W2, number of leaves, height and number of 

flowers were recorded at the time of defoliation and also at regular intervals in the experiment. 

All seed produced by the cutting date was collected and throughout the experiment any seed that 

was about to set was also collected and time of collection noted. The number of seeds per head 

was counted for two plants per cutting treatment per block. The plants were chosen for this 

procedure randomly. The number of seeds per head did not vary per cutting date. For the rest of 

the plants, the number of seed heads was multiplied by the mean number of seeds per head to 

estimate the total number of seeds per plant. 

Viability at different cutting dates was then determined. Seeds for each cutting date were pooled, 

100 seeds were selected randomly for each cutting date and germinated in seed trays on a 

Page 196 



mixture of 1:1 peat moss to sharp sand for 3 months. Previous germination trials revealed all of 

the seeds had germinated after 3 months and no subsequent germination occurred after this 

period, so it was considered long enough. There were 6 replicates for each cutting date and 

control trays with no seed were included within each block. 

The percentage viability at each cutting time was then multiplied by the mean number of seeds 

produced to give an estimate of the number of viable seeds produced at each cutting date. Where 

plants came back and flowered after cutting, the later seed viability was calculated as the mean 

viability at that later date across all treatments due to the limited number of seeds available. 

general linear model was undertaken to determine whether there was a significant difference in 

viable seed production due to cutting date. A post-hoc S-N-K test was undertaken to ascertain 

where that difference lay. 

3.2.6 The impact of cutting date on juveniles 

Aim - to determine the effect 01 cutting date on the survival and size 01 s. aquaticus 

To investigate the impact of the different cutting date on the survival and fecundity of juvenile 5. 

oquoticus individuals, the seedlings were subjected to different cutting regimes under controlled 

conditions. 5. oquaticus seedlings were germinated in the greenhouse in March 2007. These were 

then hardened off and transplanted to 9 cm pots in April in a 1:1 sand and peat moss medium. 

Plants were the randomly assigned to one of 10 blocks with 30 plants per bock and then randomly 

allocated a treatment (early hay cut 16 June, late hay cut 7 July or control treatment with no cut). 

At the assigned cutting date, plants were defoliated with scissors to 3 cm above soil level to mimic 

a hay cut. Plant sizes in April were recorded to be used as a covariant to remove any effect of 

starting size in further analysis. Plants were then left to recover and in September, WlxW2, 

number of leaves and height of each plant was recorded. General linear models was undertaken 

to ascertain if there was any difference in plant size and survivorship with cutting date. The 
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baseline size was not used as a covariant as there was no correlation between this and plant size 

or survivorship. 

3.2.7 Seed bank analysis 

Alm- to estimate the size and longevity of S. aquaticus seed bank in the field 

To investigate the longevity of seed banks 16 x 8 cm diameter, 10 cm deep soil cores were taken 

from each site at two dates, in mid-May before the seed had set and in August after the seed had 

set for that year. Large differences in the seed bank between those dates were likely to indicate a 

short lived seed bank if one year's seed was making up a large proportion of the seed bank. 

Sampling involved taking soils cores which was not desirable as it would create gaps in the sward. 

Because of this, the sampling took place in a field adjacent to the sample plots. Fields with high S. 

aquaticus infestation were chosen to ensure a seed bank was present. 

Soil cores were then spread over the top of a peat-based medium in seed trays in the greenhouse 

and germinated under lights for three months. Cores were organized into blocks, with each block 

containing one core from each site at each date. A control tray of blank peat medium was 

included to ascertain whether there were any S. aquaticus seeds present in the medium or which 

could have transferred from tray to tray. Numbers of S. aquaticus seedlings were counted at two 

week intervals. General linear model was then undertaken to determine if there was a difference 

in seed bank between the two cutting dates and sites. 
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3. Results 
3.3.1 Life history 

Table 1 : Survivorship of different sized adult and juvenile Senecio plants in the field 2006 -2007. 

Juveniles and adults are subdivided in to 1-5 leave, 5-10 and 10-15 leave size subclasses. 

Size % Alive % juveniles % adults % Alive % juveniles % adults % Alive % 

total October 06 tota l june 07 tota l Juvenil 
October 06 June 07 

October 06 October es 
June 07 

07 Octobe 

r07 

Juvenile all 87.S 84.6 3.06 41.8 2.04 39.8% 0 2.04 

1-5 leaves 90.5 90.5 0 24.49 2.38 33.3 0 0 

5-10 leaves 88. 9 82.2 6.7 15.3 2.2 51.1 0 0 

10-15 leaves 72.7 72.7 0 0 0 18. 2 0 0 

Adult all 0 0 0 0 0 0 0 0 

1-5 leaves 0 0 0 0 0 0 0 0 

5-10 leaves 0 0 0 0 0 0 0 0 

1D-15 leaves 0 0 0 0 0 0 0 0 

Only 11 of the 90 straws that marked the seedlings in October had plants near them the following 

yea r (data not shown). When the number of seedlings that was near each straw is taken into 

con sideration this is a very high mortality of 95%. Survival for juveniles (rather than seedlings) 

from June 2006 to June 2007 was 42%. This did not appear to be size dependent. The majority of 

the surviving plants acted as biennials, flowering in 2007. However a small proportion (2%) 

persisted as rosettes and acted as perennials; this did not appear to be size dependent either. All 

adult plants present in June 2006 were dead before October 2006 (table 1 fig 3.4). 
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Germination 
Autumn/Spring 95.75% 

Short term 
seed bank 

4.25% 11<11~1--------' ---.1 2.04% 

Seed set 
(wind 
disoersal) 

~ 41.8% 

Death I ~ 

Figure 3.4 The life cycle and survivorship of S. aquaticus 

3.3.2 The importance of root and shoot competition to S. oquoticus 

56.16% 

There was a significant difference in the size W1xW2 (i.e. width1 x width2 as described earl ier) of 

the S. oquoticus plants when root competition was excluded (p<O.OOl) . Excluding shoot 

competition did not impact on plant size (fig3 .5). 
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Fig 3.5 Variation in mean plant size W1xW2 with treatment 

3.3.3 The impact of gap size on survival and fecundity of S. aquaticus under root and shoot 

competition 

Plant biomass increased significantly with gap size (p<O.OO1) . Plant size also increased 

significantly with root exclusion (p<O.OOl) (fig 3.6), although Student-Newman-Keuls (SNK) post 

hoc tests (a statistical test to look for significant differences between the sub groups) indicated 

that the differences only occurred with gap sizes of 16 and 25 cm. There was also an interaction 

between gap size and root exclusion. The increase in biomass with gap size was greater with root 

exclusion than with root competition. 
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Figure 3.6 Variation in plant dry biomass (g) loglO(n+l) with gap size and level of competition 

Root-to-shoot ratio varied significantly with gap size (p<O.OOl) but not with root competition (Fig . 

3.7.). SNK post hoc tests indicated that the significant variation was between a gap size of 5 cm 

and the other gap sizes; shoot-to-root ratios being higher at gap size 5. 
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Fig 3.7 Variation in shoot/root ratio with gap size and root competition 
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3.3.4 The impact 0/ gap size and root competition on germinating S. aquaticus seedling 

There was significant variation in the mean number of germinating seedlings with gap size 

(p<.OOl) . However SKN post hoc tests showed that this variation was only between the 0 gap size 

and the others where no seedlings germinated (fig 3.8). 
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Figure 3.8 Variation in mean seedling germination with gap size 

3.3.5 The impact of Cutting date on adult S. aquaticus plants 

3.3.5.1 Number 0/ seeds per seed head 

The mean number of seeds produced per seed head was 56.91 . This did not vary significantly 

with time of cut (Fig. 3.9). No seeds were produced at the 05/05 cut, so this cut has been omitted 

from the graph . 
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Fig 3.9 Variation in number of seeds per flowering head with cutting date 

3.3.5.2 Variation in seed production with cutting date 

The number of flowering heads was multiplied by the average number of seeds per head to give 

an estimate of the number of seeds produced per plant (Fig. 3.10). No seeds were produced until 

the 19th May. The number of seeds produced increased with cutting date (p<O.OOl) to a 

maximum on the 16th June. There was no significant difference between the cuts after the 16th 

June. 
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3.3.5.3 Viability of seeds at different cutting dates 

The germination tests showed that the percentage viability varied significantly with cut date 

(p<O.OOl). No seeds were viable before the 16th 
June. There was no significant difference in 

viability after the 16th June. The mean percentage of viable seeds per plant after the 16th was 

11.25 (fig 3.11). 
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Fig 3.11 Viability of seeds at different cutting dates 

3.3.5.4 Number of viable seeds produced at different cutting dates 

As seeds were not viable before the 16
th 

June and viability was only 11.25% after that date, it can 

be concluded that the total number of seeds produced by each plant was not the same as the 

total number of viable seeds. The viability data were used along with the seed data to estimate 

the total number of viable seeds for each cut. The mean number of seeds was multiplied by the 

percentage viability at that cutting time. There was a significant difference in the number of 

viable seeds produced before the plant was cut (p<O.OOl) (Fig 3.12). No viable seeds were 
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produced before the 16th June. The mean number of viable seeds produced per plant after the 

16th June was 72.7. There was no significant difference produced with different cutting dates 

after the 16th June. 
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3.3.5.5 Number of viable seeds produced following re-flowering after the hay cut at different 

cutting times 

Plants cut before the 16th June flowered again and produced more seed. There was a significant 

difference in the number of seeds produced after the cut (p<O.OOl)(Fig. 3.13). The earlier the cut, 

the more viable seeds the plant produced from the regrowth. SNK post hoc tests indicated a 

significant difference between the number of seeds produced on the 5th May and the 1st June. 
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3.3.5.6 Total number of viable seeds produced at different cutting dates 

The mea n total number of viable seeds per plant varied significantly with cutting date (p<O.OOl). 

The tota l number of seeds decl ined from the 5th May to the 1st June, but then rose sharply on 

fro m the 16th June. The cutting date that produced the least amount of seeds overall was the 1st 

June (Fig. 3.14). 
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3.3.6 The impact of cutting date on juvenile S. aquaticus 

There was no significant variation in juvenile size with cutting treatment (fig 3.15). There was also 

no significant difference in the percentage mortality of juveniles under different cutting 

treatments (data not shown) . 
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Fig 3.15 variation in W1xW2 (em) log10 (n+1) with cutting date 

3.37 Seed bank analysis 

·T 
1 

no cut 

Seed bank analysis revealed a significant increase in seed bank between the early and late 

sampling times (p<O.05) (fig 3.16). 
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4 Discussion 

3.4.1 Life history 

The population experiment revealed very high seedling mortality of approximately 95%. This was 

surprisingly high . McClements (1992) found in a similar study a mortality of only 16.5 %. The 

seedlings in these experiments were tagged in October however, and it is possible that autumn 

germinating seedlings have a higher mortality than spring germinated ones. Unfortunately it was 

not possible to gain access to the sites in spring to tag germinating plants. Variations in site 

conditions could be a factor in explaining the higher mortality in this experiment. The sites used 

here were subjected to winter flooding, which may have increased seedling mortality. Such 

flooding may not have occurred on McClements' sites. 
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Unfortunately, because so few of the tagged seedlings survived, it was impossible to tell if any of 

the plants behaved as annuals, as it could not be determined with confidence when the tagged 

rosettes had germinated. However, the survivorship on the field trial (chapter 2) indicated that 

some indeed did behave as annuals because in some plots there were higher numbers of adults 

than there had been juveniles in the previous year. Some plants did however behave as 

perennials and persisted as rosettes over the two years of study. This was however only a very 

small number of individuals (2 %), and did not appear to be size related. However, as such small 

numbers of plants were involved; this is by no means conclusive. Survivorship was low with only 

about half of the juveniles in 2006 making it to adulthood in 2007. All of the adult plants in June 

2006 were dead by October that year. That indicates that once they have flowered 100% of them 

die and they do not come back and flower in subsequent years. This is supported by the cutting 

experiment in the lab which also found that once plants committed to flowering they would 

always die. 

These results have interesting implications for other management practice. One of the current 

methods of S. aquaticus control is hand pulling. Currently hand pullers are very careful to pull 

plants from the root believing that plants have the ability to regenerate from root fragments. This 

may be true of S. jacobaea which has a large tap root, but the results of this study show that it is 

certainly not true for S. aquaticus. Pulling from the root is very labour intensive and a lot of man 

hours will be saved if this practice is stopped. Furthermore, the results of toxicity tests for S. 

aquaticus demonstrate that very little of the PA's are found in the leaves and stem and they are 

for the most part concentrated in the flower (Vrieling personal communication). Therefore when 

pulling ragwort from swards in order to save the hay crop it could be sufficient just to remove the 

flowers and leave the stem and leaves. 
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3.4.2 The importance of root and shoot competition to S. aquaticus 

The exclusion of root competition dramatically increased the size of the S. aquaticus plants, while 

the exclusion of shoot competition had no effect. This is very interesting as it is believed that light 

competition is important for S. jacobaea (Watt 1987). This does however fit in with the results of 

Bartelheimer et ai, 2010 who found root competition to be more important for S.aquaticus. 

Water levels were kept constant, so no competition would exist for water. Therefore competition 

for nutrients must be important. It is not however clear from this study which nutrients were 

limiting; of course in a more fertile situation, where nutrients were more readily available, light 

may become limiting. 

3.4.3 The impact of gap size on survival and fecundity of s. oquaticus under root and shoot 

competition 

Plant biomass increased with gap size. Larger plants are likely to produce more seed and 

therefore large gaps should be avoided. However as distance of seed dispersal is poor, there will 

only be a limited number of places for the seed to germinate in the vicinity of the plant so it may 

not have much impact on future populations. Excluding root competition increased the size of 

the plant, indicating that even in large gap sizes plants were still under root competition. As soil 

resources seem so limiting, it is possible that in situations where there are large gap sizes and high 

nutrient levels (e.g. highly poached fertilized sites) S. aquaticus may be favoured. The ratio of 

shoot/ root was influenced by gap size; in smaller gaps, plants put more reserves into shoots. This 

is perhaps because at very small gap sizes of 5 cm diameter, light competition starts to become 

important. 
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3.4.4 The impact of gop size and root competition on germinating S. aquaticus seedling 

No seedlings emerged in the absence of a gap, but seedlings were capable of germinating in small 

gaps of just 5 cm. Gaps of this size occur relatively frequently in the field. It may therefore not be 

possible (and wasn't in the field trial) to maintain a sward dense enough to prevent germination. 

This is further evidence that the time competition in the field trial had the most effect on the S. 

aquaticus plants later in life and not at the germination stage. This also provides further evidence 

that the early hay cut reduced ragwort abundance by reducing the seed bank. The field data 

suggests the cut was having its impact at the germination stage and not later. The competition did 

not appear to influence germination except in a very closed sward. 

3.4.5 The impact of cutting date on adult S. aquaticus plants 

Although seeds were produced from the 19th May, germination tests demonstrated none of these 

were viable before the 16th June. Therefore, to prevent plants setting seed, it is essential to do 

the hay cut before that date. There is however probably some leeway as, although the seeds were 

viable, they were held quite tightly onto the seed head and observations in the field and lab 

showed that very few had shed their seed by the 16th 
June. 

All plants cut after the 16th June died and did not flower again. However, if plants were cut on or 

before the 1st June they came back and flowered and produced viable seed. The earlier they were 

cut, the more seed they were able to produce on re-f1owering, presumably because they had 

committed less of their reserves at the earlier stages. The timing of cutting date is therefore 

crucial prevent seed set. The cut should be as late as possible to prevent re-f1owering, but happen 

before seeds have become viable and set. Because of this lag time between viability and seed set, 

results indicate that the best time to carry out the hay cut would be around or just before the 16th 

June. This is supported by the evidence from the field trial which found cutting on the 15th June 

Significantly reduced ragwort abundance. It is possible that the optimum date may vary slightly 
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with seasonal weather conditions, so it may be beneficial to monitor the ragwort in the field and 

adjust the date accordingly. 100% of plants in this study died after seed set. 

This also has implications for hand pulling. Although frequently used, hand pulling has not 

successfully reduced ragwort numbers. Hand pulling is often undertaken in early July just before 

the field would be cut for hay to make the crop safe to use. This evidence suggests that hand 

pulling is done too late as the seed will have already set. The implications are however that in 

cases of low infestation in fields where an early hay cut is undesirable, for example if there were 

nesting birds, hand pulling at the correct date may have the same effect as an early hay cut if all 

the plants were successfully removed. 

3.4.6 The impact 0/ cutting date on juvenile S. aquaticus 

The different cutting times had no impact on the size or survivorship of the juvenile plants. This 

indicates that the early cut is not having an effect by causing direct mortality or reducing the 

fitness of the juvenile population. Therefore this mechanism for the early hay cut can be ruled 

out. This is supported by the results of the field trial, which suggest that the early hay cut was 

having an impact at the germination stage rather than on survival of plants. 

3.4.7 Seed bank analysis 

The seed bank analysis revealed a significant drop in seed viability by the May sampling. There 

was still seed there, which indicates the seed bank is not completely transient; however, this was 

significantly reduced compared to after the seed set. If the seed bank was very large and long 

lived, one would have expected to see little difference. This is very positive for the field trial as it 

indicates that treatments may not have to be undertaken for many years before seed bank is 

reduced to zero. It also further supports seed reduction as a mechanism for the early hay cut as a 

large, long-lived seed bank would suggest this was unlikely. 
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3.4.8 Conclusions 

S. aquaticus is for the most part biennial, but some plants do behave as perennials and this does 

not appear to be size related. Once they have committed to flower however, they will always die. 

This has implications for the field trial as well as other management practice. 

Shoot competition was relatively unimportant for S. aquaticus. This indicates that plants are 

competing for soil resources rather than light. Gap size and level of competition is important for 

established plants, but is unimportant for germinating seedling. This supports the results from 

the manured plots in the field trial, which suggested that the competition was important later in 

the plants' life. 

Juvenile plants were unaffected by cutting date indicating that the mechanism for the effect of 

early hay cut is not direct mortality of the plant. The adult cutting experiment revealed that 

cutting on 16th June (same as field trial) significantly reduced S. aquaticus viable seed production 

and was the optimum date to do this. The fact that juvenile survival was greater in the early cut 

plots, and early hay cut had a significant effect on the germinating seedlings in October indicated 

that the early cut was having an impact at or before the germination stage. As the results 

demonstrate, competition is not important at this stage; it therefore makes changes in sward 

structure an unlikely mechanism (this will however be investigated further in chapter 3). This 

coupled with the evidence that the seed bank is fairly short lived, indicates reduction in seed 

production is the most likely mechanism to explain the effect of the early hay cut in reducing S. 

aquaticus abundance. 
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Chapter 4 

The impact of the treatments on 
the MG8 Cynosurus cristatus
Caltha palustris grassland 

Chapter 4 investigated the impact of the proposed 

management practices on the species-rich MGB 

community to determine whether they would have 

any negative effects on species diversity and 

therefore make them unsuitable management 

practices. This was undertaken in the field as part of 

the field trial described in chapter 2. 



Chapter 4 The impact of the 
treatments on the MG8 Cynosurus 
cristatus -Caltha palustris grassland 

4.1 Introduction 

Senecio aquaticus occurs predominantly on MG8 (Cynosurus cristatus -Caltha palustris grassland) 

as defined by the National Vegetation Classification (Rodwell, 1991.) MG8 is both rare and 

exceptionally diverse and supports a wide variety of invertebrates and birds. It is therefore 

important that as well as controlling S. aquaticus populations the treatments do not have any 

negative impacts on the MG8 community. This chapter aimed to identify any changes to this plant 

community as a result of the treatments. 

MG8 plant communities can be a very species rich with, in some cases, as many as 40 species of 

plant per square metre (Wallace and Prosser, 2003). They are also exceptionally diverse with no 

single species consistently dominant (Rodwell, 1991). The constant species are Anthoxanthum 

adoratum, Caltha palustris, Cerastium fontanum, Cynosurus cristatus, Festuca rubra, Holcus 

lanatus, Leontodon autumnalis, Poa trivialis, Ranunculus acris, Rumex acetosa and Trifolium 

repens. Although the community is mainly dominated by grass species, there are commonly 

sedges present as well as a number of large dicotyledons such as Caltha palustris and Filipendula 

ulmaria. (Rodwell, 1991). 

The community occurs on inundated grassland which has been traditionally managed as pasture 

for cattle and/or a hay crop (Rodwell, 1991). The area is usually agriculturally unimproved but 
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The community occurs on inundated grassland which has been traditionally managed as pasture 

for cattle and/or a hay crop (Rodwell, 1991). The area is usually agriculturally unimproved but 

obtains its nutrients from flood waters. MG8 is now a rare community due to agricultural 

intensification. Many previous sites have been improved and drained. The quantity of MG8 

remaining is unknown. Jefferson and Robertson (1996) estimated that <500 ha of MG8 grassland 

remain in England and Wales, while Blackstock et al (1999) estimated it as between 500-100 ha. 

MG8 meadows are highly sensitive systems, and many studies have demonstrated that the key 

drivers are nutrient status and hydrology (Silvertown et al., 1999; Kennedy et aI., 2003). As with 

the S. aquaticus, the early hay cut may prevent other species setting seed and therefore change 

the plant community. Annuals are likely to be particularly sensitive to an early hay cut. There is 

therefore a lot of potential for the treatments to damage the plant community. It was therefore 

critical that this was monitored alongside the S. aquaticus populations to be sure that it was 

having no adverse impact on the MG8 community. Changes in plant community structure might 

also reveal more about why the treatment methods were working or not. It could be expected for 

example that manure application, if working by competitive exclusion, would do so by increasing 

the abundance of competitive species in the sward and out-competing the S. aquaticus. 

4.2 Methods 

4.2.1 Experimental design 

The experimental design is described in Chapter 2. The monitoring of the community was 

undertaken at the same points as the ragwort quadrats in Chapter 2. 
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4.2.2 Community monitoring 

The community was monitored using 1 m square quadrats at the same points as the S. aquaticus 

monitoring was undertaken. Percentage cover was recorded in five 1 m square quadrats per 

treatment plot. Metre square quadrats were used instead of the 2 m x 2 m squares recommended 

by the National Vegetation Classification system because percentage cover is more accurately 

estimated at this size. Metre square quadrats are also the standard size for monitoring used by 

the Floodplain Meadows Partnership and therefore the data are comparable. These data were 

collected annually from June 2004-2007. The 5 quadrats for each plot were averaged to give plot 

mean values. Quadrats were taken at the same positions each year so that changes could be 

accurately monitored. Quadrats were orientated parallel to the northern edge of the field. The 

2004 data were collected before any treatment application, so can be regarded as baseline data. 

4.2.3 Monitoring 

The methodology followed that of Prosser and Wallace (1996). A 1 m x 1 m quadrat formed the 

primary recording unit, with all species of vascular plant and bryophyte being listed and assigned 

cover values (using visual estimates of percentage cover). 

4.2.4 Biomass Sampling 

Biomass of the sward was monitored to indicate if productivity was affected by the treatments. 

Each quadrat was cut and harvested using hand shears to a height of 3 cm. This was to represent 

a hay cut. The harvested samples were weighed and sub-sampled to approximately 400 g. The 

subsamples were then dried in an oven at 402C for 3 days. The dried biomass was then weighed 

and the approximate biomass for 1 m2 was calculated. 
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4.2.5 Analysis 

4.2.5.1 General linear model (GLM) 

To determine if the variation was due to the treatments an General linear model (GLM) was 

undertaken (Wildt and Ahtola, 1978). Analysis of covariance is an extension of general linear 

model that allows one to explore differences between groups while statistically controlling for an 

additional continuous variable (covariate). In this case the "pre-treatment" variation between the 

treatment plots. The assumptions of this analysis are normal distribution, equal variance and that 

the covariate is accurate and does not correlate with other covariates (but does with the 

dependent variable and linearity). Data were log transformed in order to meet the assumptions of 

the analysis. 

Selection of covariates 

For all the subsequent analysis sum exceedance value for aeration (SEVA), sum exceedance value 

for soil drying (SEVD; after Silvertown et aI., 1999) and mean water-table depth were used as 

covariates unless stated otherwise. This is because these variables were highly significant in 

explaining the composition of the MG8 community, such that soil wetness could be masking much 

of the variation in treatments. By using them as covariates, this variation was able to be removed 

from the analysis. These variables correlated significantly with the dependent variable in 

question, thus meeting the assumptions of the analvsis. 

4.2.5.2 Species richness 

Species richness was calculated for each quadrat. For the purposes of this project, species 

richness was defined as the mean number of plant species (vascular + bryophyte) per 1 m2 

quadrat. 
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4.2.5.3 Diversity 

Diversity was calculated using Simpson's index of diversity, which accounts for both abundance 

and evenness. This describes the probability that two individuals drawn sequentially from a 

sample are of the same species. 

where 0= Simpson's diversity 

PI = probability of selecting the ith species (= njN) 

nl = number of individuals of the ith species 

N = total number of individuals 

o is Simpson's index of dominance. Simpson's index of diversity is extremely sensitive to changes 

in the abundance of the most common species. The Community Analysis Package was used to 

undertake this analysis (Pisces Conservation ltd., lymington) 

4.2.5.4 Change in community structure 

It is one thing knowing whether the species richness and diversity remain the same within the 

treatment plots, but it is possible that diversity and richness can remain the same yet the 

composition of species within the community change. The subsequent analysis were undertaken 

to try and ascertain if the composition of the MG8 community remained the same within the 

treatment plots and if not, what environmental drivers were causing that change. 
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4.2.5.5 NVC Matching 

The similarity ofthe treatment blocks were compared to the constancy table for MG8 as listed in 

Rodwell (1991). If this is considered the "gold standard" for MG8 communities, then a high 

similarity with the constancy table indicates a good MG8 community. This was undertaken in 

MATCH (Malloch 1995). MATCH calculates the similarities between test data and NVC constancy 

tables by means of the Czekanowski similarity coefficient. This is a widely used 'proximity 

measure' for assessing the similarity (on a percentage scale) between pairs of community samples 

in terms of their species composition (Kent & Coker 1992). 

4.2.5.6 Plant functional groups 

Plant species were divided into their different functional groups (legumes, forbs, grasses, rushes 

and sedges) to ascertain if the treatments were changing the percentage of these functional 

groups within the sward and therefore causing changes in the plant community. Mean percentage 

of sward was calculated as an average per treatment block for each site. Two-way general linear 

model was undertaken to determine the significance of these differences, using SEVA, SEVD and 

mean water-table depth to remove variation caused by these factors. 

4.2.5.7 Plant strategies - Grime's C-S-R model 

Differences in plant strategy types in accordance to Grime's CSR theory were used to see if there 

was any change in the plant community. Grime divides plant strategies into 3 different types 

based on their ability to survive stress and disturbance. These 3 functional types are competitors 

(C), Stress tolerators (S) and Ruderals (R). Competitors are plant species that do best in areas of 

low intensity stress and disturbance and can compete well with other species. These species are 

able to outcompete other plants by most efficiently tapping into available resources. They have 

the ability to quickly utilize resources with a rapid growth rate. Stress tolerators are plant species 

that live in areas of high intensity stress and low intenSity disturbance. They are species that are 

adapted to survive well in extreme conditions, for example waterlogging. Ruderals are plant 

species that do best in situations of high intensity disturbance and low intensity stress. These 
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species are fast-growing and rapidly complete their life cycles and are often annuals. Grime states 

that all plants species show traits ofthese 3 types (Grime, 1979). In this analysis, plants were 

given scores for C, Sand R traits such that the scores for each plant added up to 12 (Hodgson et 

al., 1999). Species scores were then used with presence/absence data to obtain a mean C, Sand 

R value for each quadrat. Mean scores were then calculated for each treatment. 

4.2.5.8 Ellenberg 

Ellenberg indicator values are ordinal values given to plants based on their ecological niche for 

certain environmental variables. Therefore by calculating mean Ellenberg values for each 

treatment, it is possible to see if the plant community has changed; for example in the case of the 

Ellenberg F value, if mean Ellenberg F for the community increased it suggests conditions have 

changed favouring plants whose ecological niche includes higher water tables. Mean Ellenberg 

values were calculated for each quadrat for F (hydrology) and N (nitrogen). Ellenberg R was 

omitted from the analysis due to the low number of values available for the species pool at the 

experimental sites. Ellenberg's original values were used for vascular plants together with Hill's 

bryophyte values (Hill et aI., 2007). 

4.2.5.9 Twinspan 

The percentage cover data were used in a Twinspan analysis (Two-Way INdicator SPecies Analysis) 

procedure (Hill et al. 1975) with all species carrying equal weight. In Twinspan analysis, samples 

are ordinated using Reciprocal Averaging (RA). A dichotomy is then made using the RA centroid 

line to divide the samples into two groups (negative and positive). The clusters of samples 

obtained are then ordered so that similar clusters are near each other. This procedure subdivides 

the groups until the minimum group size is obtained. In the original output a table is then 

produced showing species-by-site (quadrat or sample) relationships. 
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4.2.5.10 Principal component analysis 

Principal component analysis (PCA) was used to ordinate the quadrats according to their species 

composition. PCA is an ordination technique which involves an Eigen analysis of the correlation 

matrix. Quadrats and species are ordinated along axes that are selected to explain the most 

variation within the data. By comparing the ordination of the treatments, it is possible to 

determine if there are changes in the community composition. 

4.2.5.11 Canonical correspondence analysis 

Canonical correspondence analysis was undertaken to determine which environmental factors 

were most important for determining species distribution on the sites. Canonical correspondence 

analysis is a multivariate direct gradient analysis method that is derived from Correspondence 

analysis, but has been modified to allow environmental data to be incorporated into the analysis. 

The result is that the axes of the final ordination, rather than Simply reflecting the dimensions of 

the greatest variability in the species data, are restricted to be linear combinations of the 

environmental variables and the species data. In this way these two sets of data are then directly 

related (Jongman et aI, 1995). 
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Results 

4.3.1 Species richness 

Manure appl icat ion significantly reduced species richness from a mean of 15 to 13 per m
2 

(p=O.008) (Fig. 4.1). Drainage on the other hand significantly increased species richness from a 

mea n of 13 in control plots to 15 in guttered plots. 
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Figure 4.1 Variation in Species Richness with t reatment Error bars +/- standard error of the mean . 

4.3.2 Simpson's Diversity index 

Simpso n's diversity index was calculated for the different treatments (fig 4.2). One way general 

linea r model was undertaken to determine if there were any significant differences between the 

Simpson's index fo r the different treatment plots (see appendix). Data were checked to meet the 

assumptions of the analysis. There was a significant decrease in the Simpson's Diversity index with 

the ma nure t reatment from 6.3 in control plots to 5.2 in those with manure application (p=O.031) . 

There was also a significant increase in diversity with drainage from 5.2 in control plots to 6.3 in 

those tha t were drained. 
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Fig 4.2 Variation in mean Simpson's diversity index for the treatments (error bars represent +/-

the standard error). 

4.3.3 Sward biomass 

Mean sward biomass (dry weight) was calculated for each treatment (Fig 4.3).·Early hay cut 

significantly decreased the dry weight sward biomass. However it should be noted that this was 

because, due to time constraints, the early cut plots had to be harvested 2 weeks before the 

control plots. They therefore had a shorter growing period. 
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Figure 4. 3 Variation in mean sward dry weigh biomass for the treatments (error bars represent 

+/- the sta ndard error) . 

4.3.4 Percentage Match to MG8 community 

Each set of 5 quadrats per treatment block was tested to see how similar they were to the NVC 

constancy table for MG8 as described above. Percentage similarities to the constancy tables are 

shown below (fig 4.5) . General linear model was undertaken to determine the significance of 

these differences after the assumptions of the analysis were tested . Manure significantly 

decreased the percentage similarity from 42% to 37% (p=0.024), liming and draining both 

significa ntly increased the similarity to MG8 community (p=0.029 and 0.024 respectively) . 
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Fig 4.5 Variation in mean % similarity to MG8 for the treatments (error bars represent +/- the 

standard error) 

4.3.5 Functional groups 

Plant species were divided into their different functional groups (legumes, forbs, grasses, rushes 

a nd sedges) to ascertain whether the treatments were changing the percentage of these 

functional groups within the sward and therefore causing change in the plant community. Two-

way general linear model was undertaken to determine the significance of these differences, 

using SEVA, SEVD and mean water-table depth to remove variation caused by soil-moisture 

regime. 

Legumes 

There was a decrease in percentage composition of legumes with the manure treatment and an 

increase with the cut, lime and drainage treatments (Fig 4.6). The most marked of these was with 

the liming, with a change from 0.5 % in the control plots to 1.8 % in the treated plots. GLMI 

determined that both Lime (p=0.002) and Drain (p= 0.022) significantly increased the percentage 

of legumes in the sward. 
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Figure 4.6 Variat ion in mean percentage of legumes in the sward for the treatments (error bars 

represent +/- the sta nda rd error) 

Forbs 

There was a signi f icant decrease in the percentage offorbs in the sward with manure application 

(p= 0.037) (see appendix). Th ere were no significant differences in percentage cover w ith the 

other treatments. There was however an interaction between cut, lime and manure (p=0.037) 

(Fig. 4.7) . 
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Fig 4.7 Variation in mean percentage offorbs in the sward for the treatments (error bars 

represent +/- the standard error) 

Grasses 

Both manure application and drainage significantly increased the percentage cover of grass 

species in the sward (p= 0.013 and p=0.007 respectively) (fig 4.8). Drainage had the biggest 

impact on mean percentage cover, causing an increase from 42% in the control plots to over 60% 

in the drained plots. Early hay cut and lime had no impact on the percentage cover of grass 

species. 
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Fig 4.8. Variation in mean percentage of grasses in the sward for the treatments (error bars 

represent +/- the standard error) 

Sedges 

All the treatments reduced the % cover of sedge (Fig. 4 .9), however only drainage did so 

significantly (p = 0.019). The mean sedge cover decreased from 35% in control plots to 22% in 

drained plots. 
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represent +/- the standard error) 

Rushes 

There was a significa nt decrease in rush cover in the drained plots (Fig. 4.10) (p=O.002) (see 

appendix) with a decrease in cover from 7% in control plots to 3% in drained plots. 
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Fig 4.10 Variation in mean percentage of rushes in the sward for the treatments (error bars 

represent +/- the standard error) 
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4.3.6 CSR scores 

Cscore 

There was an increase in C score w ith manure and cut and a decrease with drain for C scores (fig 

4.11) . Two-way GLM was undertaken using SEVA, SEVD and mean WT depth as covariates. None 

of these trea tments were significant at the p<0.05 level, but the manure treatment was close to 

being Significant with a p value of 0.058. 
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Fig 4.11. Variat ion in mean C score for the treatments (error bars represent +/- the standard 

error) 

S5 ore 

There was an increase in 5 scores with cut and lime and a decrease with manure and drain (FigA. 

12). These differences however were not significant. There was however a significant intera ction 

between lime and manure. (p: 0.05). 
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Figure 4.12 Variation in mean S score for the treatments (error bars represent +/- the standard 

error) 

R score 

Early hay cut Significantly decreased the R score for the sward from 4.6 to 4.3 (Fig. 4.13) (p= 

0.007) . Drainage on the other hand significantly increased the mean R score from 4.3 in the 

control plots to 4.5 in the drained plots (p= 0.066). Neither lime nor manure had any significant 

impact on t he R score. 
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Figure 4.13. Variation in mean R score for the treatments (error bars represent +/- the standard 

error) 

4.3.7 Ellenberg values 

There was a significant difference between Ellenberg F scores between treatment and control 

plots for drainage (p<O.OOO) and lime (p= 0 .045) (Fig. 4.14) 
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Figure 4.14. Variation in mean Ellenberg F score for the treatments (error bars represent +/- the 

standard error) 
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There was no significa nt difference between the treatment and control plots for mean Ellenberg 

N (Fig.4 .15) 
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Figure 4.15. Va riation in mean Ellenberg N score for the treatments (error bars represent +/- the 

standard error) 

4.3.8 Twinspan 

Twinspan ana lysis was undertaken for the different treatment blocks against the species. The 

composition of the end groups indicates that site rather than treatment was more important in 

explaining t he va riat ions in species composition (Fig. 4.16) . However, there did appear to be 

some clustering with the drainage treatments; especially on the Southlake site. This analysis does 

not however show any clear trend in species composition with respect to treatment. 
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Figure 4.16. Twinspan dendrogram weighted by cover for treatment plots and sites. SL = 

Southlake, WS -= West Sedgemoor, KS = Kings Sedgemoor, C = early cut, 0 = drained, L = lime, M= 

manure. 

4.3.9 peA 

Principal component analysis was undertaken for the mean manure and early hay cut blocks as 

well as control plots per site in relation to the species in 2007 and 2004 (Fig.4. 17). Manure and 

early hay cut were used as they were the treatments that successfully controlled s. aquaticus 

populations. The arrows on the graph indicate shift in the plant community in relation to the 

species present between 2004 and 2007. One arrow is displayed per site. Some of the most 

important species are labelled on the graph to indicate changes in species that are occurring. 

There is a shift to the top of the graph from 2004 to 2007 in the early hay cut plots; this is in the 

same direction as the control plots, which could be regarded as natural community change 

towards Corex nigra. Manured plots on the other hand are shifting to the bottom right of the 

graph away from the control plots and towards Agrosis stofoni/era. 
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The PCA results for the 2004 and 2007 control plots indicate that there was a shift in the 

community from 2004 to 2007. This can perhaps be regarded as a natural community shift 

independent of the treatments. The early hay cut treatment follows the direction ofthis shift 

perhaps indicating that it is not having a direct impact on the plant community. The manure 

treatment however is heading in the opposite direction of the ordination graph indicating that it is 

causing change in the plant community composition. This shift is towards the more aggressive and 

competitive Agrostis stolonifera. 
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Figure 4.17 PCA for showing shift in MG8 community from 2004 to 2007 with the manure and 

early hay cut treatments. 

A second PCA was then undertaken for all treatments (fig 4.18). Each point on the graph 

represents a quadrat. Control and treatment plots are represented in different colours. Ifthere 

was no communi ty shift one would expect to see an even spread of both treatment and control 

plots. Some significant species are represented on the graph in order to illustrate the direction in 

which any community shift is occurring. Control, lime and drain treatments show a fairly even 
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spread of points across the graph. However they seem to show a clustering around the bottom 

left corner which is associated with species such as Cynsaurus cristatus and Poa trivilais. With 

manure on the other hand, there is a visible shift in the other direction, towards the bottom right 

hand side of the graph. This is associated with Agrosis stolonifera. 
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Figure 4.18. Principal component analysis showing quadrats orientated with species for the 

different treatments. 
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Principal component analysis for the treatments showed community shift with the different 

treatments. Lime, drain and cut showed a shift towards the bottom left of the graph towards 

species such as Poa trivialis and Cynosaurus cristatus, whereas manure, showed a shift in the 

opposite direction towards Agrostis sto/onifera. This again demonstrates that manure is favouring 

more competitive species such as Agrostis. The shift with the other treatments again might be 

down to the removal of stress, allowing plants to come into the sward which might not otherwise 

have been there. It is not clear however why early hay cut might be affecting the community 

com position. 

4.3.10 Correlations for species with treatments 

Pearson's correlations were undertaken to determine whether there were any correlations 

between abundance of species (% cover) and the treatments (Table 4.1). Early hay cut had a 

negative impact on S. aquaticus abundance but had no impact on other species. lime had a 

positive impact on both Trifolium repens and Plantago lanceolata and no negative correlations. 

Manure had a positive correlation with Agrostis sto/onifera abundance and negative with both 

Senecio aquaticus and Lychnis flos-cuculi. Drainage had positive correlations with Anthoxantum 

odoratum, Festuca rubra, Poa trivialis and FiJipendula ulmaria. 
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Table 4. 1. Pearson's correlations for species with treatments 

Cut lime Manure Drain 

Positive Plantago Agrostis Anthoxanthum 
lanceolata sto/onifera odoratum 
(p=O.031) (p=O.012) (p=O.012) 

Festuca rubra 
Trifolium 
pratensis 

(p=O.02) 

(p=O.039) Poa trivialis 
(p=O.022) 

Filipendula 
ulmaria 
(p=O.017) 

Negative Senecio Lychnis Glyceria Iluitans 
aquaticus (p=O.041) 
p=<O.OOO1 Ilos-culci 

(p=O.41) Caltha palustris 
(p=O.015) 

Senecio Lysimachia 
aquaticus nummularia 
(p=O.028) (p=O.017) 

Polygonum 
amphibium 

4.3.11 Canonical Correspondence Analysis 

Canonical correspondence analysis (CCA) was undertaken to determine the relative importance of 

the different environmental variables on species composition (Fig.4. 19). CCA arranges each 

species in the ordination diagram in a position that reflects its net tolerance to all of the 

environmental factors. Sites are located on the ordination diagram in relation to the 

environmental variables. The x axis on the diagram represents the axis corresponding to the 

greatest amount of variation in the dataset (axis 1) and the y axis (axis 2) the next greatest 

amount of variability. 

Environmental variables are shown on the diagram as vectors. If the species is located on the 

diagram in the direction and close to the end of that vector, it is demonstrating a high tolerance 
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to that environmental variable. If it is positioned away from that vector, it is demonstrating low 

tolerance. The length of the vector on the plot represents the relative importance of that 

environmental variable in determining species distribution; this is known as forward selection. 

The environmental variables used were the treatments lime, manure, drain and cut. 

Environmental variables that are correlated appear closer together on the diagram (these are 

entered into the analysis as binary). SEVA, SEVD, available phosphorus and pH were also entered 

as environmental variables. Mean water-table depth was omitted in order to meet the 

assumptions ofthe analysis as it showed high levels of colinearity with SEVA and SEVD. 
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Forward selection indicated that the most important variable in explaining species composition 

was SEVA, followed by SEVD and then pH and phosphorus. Manure and phosphorus, were close 

together on the ordination diagram suggesting manure application may be increasing available 

phosphorous, as were lime and pH, indicating that lime application may be increasing pH. 

Surprisingly, as early analysis showed it to have little effect on the species composition, early hay 

cut seemed to have the largest impact on species distribution. Manure had the second biggest 

impact then lime and then lastly drain. 

Many species are located on the diagram away from SEVA, indicating they are not able to cope 

with high aeration stress. Notably as they appear at high constancies in the MG8 floristic table, 

species such as Festuco rubro, Ronunculus ocris, Cerostium fontonum, Bellis perennis and Corex 

poniceo seem to be very negatively correlated with SEVA. Species associated with high aeration 

stress include Glycerio maximo, Polygonum omphibium and Ronunculus repens. 

Many species are located on the other side of the diagram to drying stress, indicating poor 

tolerance to this variable. Notable species include Co/tho palustris, Juncus subnodu/osus, 

Leontodon autumnalis and Eleocharis palustris. Cynosaurus cristatus and Holcus lanotus appear to 

be associated with high drying stress. Because of the high importance of these two variables in 

the analysis, care must be taken when looking at subsequent variables that appear close-by on 

the ordination not to incorrectly attribute distribution to them. lime application seems to favour 

a number of species including Carex panicea, Mentha aquatica, Festuca pratensis and Juncus 

acutiflorus. Drain has a number of species associated with it, including Caltha palustris, Leontodon 

outumnolis and Tholidrum flovum. 

Manure and early hay cut are on opposite sides of the ordination diagram. Manure has many 

dominant grass species associated with it, including Glycerio maxima, Agrostis conina, Agrostis 

stolonifero, Alopecurus geniculatus and Pha/aris orundinacea, whereas early hay cut is associated 

with less dominant grasses such as Anthoxanthum ordoratum, Festuca rubra and forbs such as 

Potentilla anserina, Stel/oria gramineo and Lysimachia nummularia. 
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4.4 Discussion 

It should be remembered that manure and early hay cut were the two treatments that decreased 

S. aquaticus abundance. However all treatments have been included in the community analysis 

for interest. 

4.4.1 Species richness and diversity 

Both species richness and diversity significantly decreased with manure application and increased 

with drainage. The fact that they decreased with manure application is worrying in terms of its 

use as a treatment for S. aquaticus control as it is indicating that it is negatively impacting the 

sward. The likely reason for this is that manure application is favouring more competitive species 

such as grasses and therefore many of the less competitive species are being out-competed and 

being excluded from the sward. This fits with the literature showing that fertilizer application 

including manure can reduce species richness. This fits in with the theory that manure application 

is reducing S. aquaticus abundance by competitive exclusion. 

Drainage increased both species richness and diversity. This is somewhat surprising as the 

drainage treatment aimed to increase competitive species and therefore out-compete S. 

aquaticus, so it potentially could have reduced the richness and diversity. It might be that the 

treatment is reducing the aeration stress, thereby allowing more species to survive there which 

would have otherwise been excluded as they were unable to tolerate those conditions. It is also 

possible that the act of creating the drainage ditches could have created local disturbance 

allowing more ruderal species to come in, thus increasing diversity and richness. Both SEVA and 

SEVD were highly important covariables in the analysis, indicating that water table is a very 

important driver for the MG8 community. Although the "drain" treatment in this trial proved not 

to be a viable method for S. aquaticus control, it was a useful tool for improving sward diversity 

and richness. 

Page 1144 



4.4.2 Sward biomass 

Sward biomass was significantly impacted by early hay cut with a much smaller biomass for the 

early cut plots. As mentioned above this is because, due to time constraints, early cut plots had to 

be harvested 2 weeks before the control plots. It is not a reflection that the composition of the 

community might be changing due to the treatment. It is however worth noting that hay is taken 

as a commercial crop and therefore early hay cut is likely to lead to some level of economic loss to 

the farmer. 

4.4.3 Community composition 

The structure of the MG8 community was analysed further as it is possible to have no change or 

even increase in species richness and diversity, but have a completely different set of plants and 

therefore a different community. It was therefore essential to look at changes in the community 

structure for the different treatments. 

4.4.4 Match to MGB community 

Manure again significantly reduced the percentage match to the MG8 community, which puts its 

use as a tool for Senecio aquaticus control into doubt. Possibly again this is due to the manure 

allowing more competitive species to dominate the sward and out-compete some of the species 

that are typical ofthe MG8 community. 

Early hay cut had no significant impact on the MG8 similarity scores. This indicates that early hay 

cut is not having an effect on the MG8 community. lime and drainage both significantly increased 

the match to MG8. This could be expected. The trial sites were slightly more acidic than is typical 

for MG8 (Gilbert et al. 2009) and many plants cannot tolerate these conditions. By adding lime, 

plants are being allowed to come in which would previously not have been able to survive in the 

low pH conditions. Similarly with drainage, as mentioned above, plants that cannot tolerate 

waterlogging would be able to survive in better drained plots. It was recognised by 1995 that late 
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flooding was detrimental to the survival of MG8 vegetation (Evans et.a/1995) and the RSPB are 

trialling guttering systems in order to try and improve the MG8 community 

4.4.5 Functional groups 

Early hay cut had no significant effect on the percentage cover of different functional groups in 

the sward. This is good news in terms of using it as a Ragwort control method as it is not 

damaging the species in the sward. This fits with the theory that the early hay cut mechanism for 

reducing S.aquaticus abundance is by preventing seed set rather than by increasing plant 

competition. 

Manure application significantly decreased the number of forbs and significantly increased the 

number of grasses. This could be expected as higher soil fertility favours the more competitive 

grass species, which can grow faster and out-compete smaller species such as forbs for nutrients 

and light etc. This supports the theory that manure application is decreasing S.aquaticus 

abundance and changing the plant community structure by increasing the competition from the 

sward and therefore out-competing S.aquaticus. 

Lime application significantly increased the percentage of legumes present. This is somewhat 

surprising as lime can increase soil fertility by increasing nitrogen mineralization and decrease the 

competitive advantage that nitrogen fixing legumes have over other plants. However, as the 

manure application had no impact on the percentage of legumes present, it is likely that this is 

not happening. One possible mechanism for the increase in legumes is that the sites are quite low 

pH and many species cannot tolerate this. By increasing the pH an environment that is more 

suitable to more species is created. 

Drainage increased the percentage cover of grass in the sward and decreased the cover of sedge 

and rush. This is could be because the decrease in water table is favouring the more competitive 

grass species which can now survive in the less waterlogged conditions. The proportion of sedges 

and rushes decreased significantly. This is likely to be because they are often adapted to survive in 
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waterlogged conditions. It is possible that under less stress from waterlogging they are losing 

their competitive advantage. 

4.4.6 Grime's CSR plant strategies 

There was no significant increase in C scores (the competiveness of the species) for any of the 

treatments. This is somewhat surprising as other analysis showed an increase in the more 

competitive grass species with the manure treatment. 

R or ruderal scores were significantly lower in early hay cut plots than in control plots. This could 

be because S.aquaticus and other ruderal species are not able to set seed before the cut. There 

was an increase in the number of ruderal species on the drained plots. This could be due to the 

fact that there was disturbance to the ground when putting the gutters in, which could lead to 

places for ruderal species to germinate. There was no significant change in the S score for any of 

the treatments. 

4.4.7 Ellenberg indicator values 

There was a highly significant difference in the Ellenberg F score for the drainage treatment with a 

much lower mean Ellenberg F score in the drained plots. This is to be expected as drainage would 

decrease stress from waterlogging and therefore favour more competitive generalist species. It is 

not clear however why there is a decrease in Ellenberg F with lime. There was no difference in 

mean Ellenberg N scores between the treatments. This is somewhat surprising as it would be 

expected that adding manure would increase this score. The reliability of Ellenberg indicator 

values has been questioned in the literature (Schaffers and Sykora, 2000) and this is perhaps why 

they have not indicated community change. 

4.4.8 Twinspan 

Twinspan analysis revealed that site rather than treatment was most important in determining 

the end groups. This variation is most likely a product of previous variation that occurred on the 
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sites before the start of the treatments and would be expected. There does appear to be a slight 

clustering with the drainage plots especially on Southlake. However this might be a product of the 

experimental design rather than as a result of impact of the treatments on species composition. 

This is because guttering had to be done on a field rather than plot scale, so guttered plots were 

located in the same fields. It is therefore likely that this clustering is due to just pre-treatment 

variation. 

4.4.9 Principal components analysis 

The PCA results for the 2004 and 2007 control plots indicate that there was a shift in the 

community from 2004 to 2007. This can perhaps be regarded as a natural community shift 

independent of the treatments. The early hay cut treatment follows the direction of this shift, 

perhaps indicating that it is not having a direct impact on the plant community. The manure 

treatment however is heading in the opposite direction on the ordination graph indicating that it 

is causing change in the plant community composition. This shift is towards the more aggressive 

and competitive Agrosis stoloni/era. 

Principal component analysis for the treatments showed community shift with the different 

treatments. lime, drain and cut showed a shift towards the bottom left of the graph towards 

species such as Poa trivialis and Cynosaurus cristatus. Whereas manure, showed a shift in the 

opposite direction towards Agrostis stoloni/era. This again demonstrates that manure is favouring 

more competitive species such as Agrostis. 

4.4.10 Correlations 

There were several significant correlations between the different treatments and species. Early 

hay cut showed no significant correlations except for a negative correlation with S.aquaticus 

abundance, perhaps suggesting again it is a good candidate to use as a treatment as it is not 

impacting the plant community. Manure showed a significant correlation with Agrosis stolonijera, 
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a competitive grass, which has in previous studies been linked to a reduction in ragwort 

abundance. This further supports the theory that manure is increasing competition. Lime showed 

a positive correlation with Plantago lanceolata and Trifolium repens. These are both listed as in 

fairly high abundance on the MG8 constancy table and perhaps indicating again that lime is 

improving the MG8 sward. Drain has positive correlations with several species including 

Anthoxanthum odoratum, Festuca rubra, Poa trivialis and Filipendula ulmaria. These species are 

again listed high up on the constancy table. These species are usually associated with drier 

swards. Drainage did have some negative impacts on certain species however, notably Caltha 

palustris which is an MG8 constant and several other species, Glyceria fluitans, Lysimachia 

nummularia and Polygonum amphibium. These are species that are adapted to tolerate 

waterlogged conditions and are probably losing their competitive advantage with drier conditions. 

4.4.11 Canonical correspondence analysis 

Canonical correspondence analysis revealed the most important variables explaining species 

distribution were those related to water table, particularly 5EVA. Many species were negatively 

associated with high aeration stress. This included many species that are high up on the MG8 

constancy table, for example Festuca rubra, Ranunculus acris, Cerastium fontanum, Bellis perennis 

and Carex panicea. It should be noted that in terms of keeping a good MG8 sward, the sites 

should not be allowed to become too waterlogged as this will be detrimental to some important 

plants in the MG8 community. Many species are located on the other side of the diagram to the 

drying stress vector, indicating poor tolerance to this variable. Notable species include Caltha 

palustris and Leantodon autumnalis. 50 again, to maintain the MG8 sward, sites should not be 

allowed to get too dry. 

In terms of the treatments, manure is associated with many dominant grass species such as 

Agrosis species, Phalaris arundinacea, Alopecurus geniculatus and Phleum pratensis; it is probably 

these species which are out-competing the S.aquaticus and other MG8 species. Less dominant 

grass species such as Anothoxanthum ordoratum and Festuca rubra along with forbs such as 
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Leontodon hispidis and Carex panicea are associated with the non-manure plots, probably as they 

are outcompeted by the more vigorous grasses in the manure plots. Early cut and lime were 

associated with a large number of species, particularly less vigorous grasses and forbs and many 

of the important plants of the MG8 community. Surprisingly, as the previous analysis did not 

reveal any change in species composition with early cut, it did seem to impact plant community. 

Species on the opposite side of the ordination diagram that were negatively affected by the early 

cut are mainly the dominant grass species. Perhaps this is because the early cut is removing any 

competitive advantage they have from being quick growing and therefore are able to shade out 

other species, thereby allowing the other species to come in later in the growing season. It might 

also favour early flowering grasses such as Anthoxanthum over later flowering ones such as 

Phleum pratensis, which perhaps would not be able to complete their life cycle with the early cut. 

Drainage was the least important variable in the CCA. It is hard to ascertain its true effect on the 

species because this analysis does not remove variation from the initial water table. 

4.4.12 Conclusions 

Manure application appeared to have a negative impact on the MG8 community, significantly 

reducing species richness, diversity and similarity to the MG8 constancy table. It significantly 

decreased the proportion of forbs in the sward and increased the number of aggressive 

competitive grass species such as Agrasis stolani/era, Phalaris arundinacea and Phleum pratensis. 

These results indicate that using this treatment as an S.aquaticus control method could be 

detrimental to the MG8 community and therefore makes it an undesirable treatment. It also 

supports the theory that the mechanism by which it reduces S.aquaticus abundance is by 

producing a dense sward and therefore out-competing the S.aquaticus. 

Early hay cut on the other hand did not impact species richness diversity or similarity to the MG8 

community. It did not appear to dramatically impact the composition of the sward, although it 

appears to have reduced some of the more vigorous grass species and favoured less aggressive, 
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more classic MG8 grasses and forbs. This is not detrimental to the MG8 community and indeed 

could be positive. This means early hay cut significantly reduces 5.aquaticus abundance whilst 

maintaining the MG8 sward. It can therefore be concluded that it is the better treatment of the 

two. The results from this chapter also support the theory that the early hay cut mechanism for 

reducing S.aquaticus abundance is by preventing seed set rather than by out competing the 

5.aquaticu5. Lime and drain treatments did not reduce ragwort abundance so are not a useful 

control method. However this chapter reveals that they may have some use in improving the 

MG8 community. 
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Chapter 5 

General discussion 

This chapter pulls together all the work from 
previous chapters and makes recommendations for 
the best method of S. aquaticus control. It also 

recommends future work. 



Chapter 5 General discussion 

Senecio aquaticus is a problematic pest species due to its toxic nature to animals. It can cause 

economic loss to farmers and just as importantly it can lead to loss of species rich habitat. 

Senecio aquaticus occurs on wet grassland and often within the rare and very species rich MG8 

plant community, which is important not only for its botanical diversity, but also for the bird and 

invertebrate populations it supports. This community relies on traditional management practices 

including grazing and hay cutting to persist. Where S. aquaticus is prevalent there is a risk that 

farmers will abandon these practices so as not to poison stock through direct grazing or hay crops. 

This in turn can lead to loss of habitat. At present no there are no adequate control methods for 

Senecio aquaticus as current ones are costly, labour intensive or may prove detrimental to the 

habitat. This thesis aimed to take an ecological approach to this problem to find a new control 

method that was both cost effective and would not damage the habitat. 

5.1 Effectiveness o/treatments 

Of the four treatments tria lied (manure application, lime application, drainage gutters and early 

hay cut), two proved effective at reducing the abundance of S. aquaticus. Results from the field 

trial show that early hay cut and manure application significantly reduced its abundance after a 

period of treatment of two consecutive years. Of these, early hay cut had the most dramatic 

effect, with a 50% decrease in treated plots compared to a 33% decrease with manure 

application. Lime had no significant effect on S. aquaticus abundance and the "drain" treatment 

actually increased its abundance. 
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5.2 Mechanisms for treatments 

It is important to understand the mechanisms by which the treatments are impacting S.aquaticus. 

It was predicted that the treatments would reduce its abundance via competitive exclusion. It was 

also thought that the early hay cut treatment might reduce the amount of seed produced per 

plant by cutting before it had set seed. The field trial, along with the pot experiments from 

Chapter 3 and analysis ofthe plant community can be used to explain how the treatments are 

affecting the plant populations. 

5.2.1 Manure 

The results indicate that the mechanism for the reduction of s. aquaticus abundance with manure 

application is via competitive exclusion; that is by increasing limiting resources it is allowing more 

competitive species to enter the sward or grow more vigorously out-competing the S. aquaticus. 

Manure application, which aimed to do this by increasing soil nutrients, was shown to increase 

phosphorus availability. 

Root and shoot competition 

The Mesocosm experiments in Chapter 3 showed that root competition was more important than 

shoot competition. The exclusion of root competition dramatically increased the size of the S. 

aquaticus plants, while the exclusion of shoot competition had no effect on the size of the plant 

and probably indicates nutrients are the limiting factor for the competitors. This fits in with the 

success of manure application which was shown to increase phosphorus availability. 

Gap size (competition intensity) 
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Mesocosm experiments also indicated that the intensity of the competition is also important. This 

was investigated by using different gap sizes in a sward to mimic levels of competition. 

Maintaining a dense sward, and therefore strong competition, could act in two ways; either 

preventing germination or out-competing older plants causing direct mortality, reducing numbers 

and subsequently reducing seed set or reducing productivity of the plant. Mesocosm trials 

indicated that seed germination was not possible without a gap in the sward, but readily occurred 

with a 5 cm gap. Therefore maintaining a very dense sward may prevent germination. In the field 

trial however, there was no significant reduction in the number of germinating seedlings in 

manured plots indicating that the manure treatment was having no impact on seedling 

germination. This might be because in reality in the field trial the sward contained many gaps, 

especially due to poaching from cattle, so germination sites of over 5 cm would have been readily 

available. Plant biomass significantly increased with gap size. Competition is therefore important 

in determining size and fitness ofthe plant and perhaps indicates that competitive exclusion is 

having an effect by causing direct mortality to growing plants. 

Sward analysis 

Chapter 4 revealed that manure application was indeed changing the sward composition and 

favouring more competitive species. It significantly increased the abundance of grass species and 

reduced the number of forbs. Species it increased included Agrostis st%ni/era, Pha/aris 

arundinacea and Glyceria maxima which are competitive grass species. Agrostis stoloni/era has 

been shown in previous studies to reduce S. aquaticus abundance. This further supports the case 

that the mechanism for this treatment controlling S. aquaticus is via competitive exclusion. 

5.2.2 Early hay cut 

Two possible methods could have caused the reduction in S. aquaticus abundance with early hay 

cut. These are preventing seed from being produced by cutting before seed set or changing the 

sward to promote competitive exclusion. Results from the field trial (Chapter2), pot experiments 
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(Chapter3) and changes to the plant community (Chapter 4) indicate that this reduction in S. 

aquaticus population is due to prevention of viable seed production rather than competitive 

exclusion. 

Field trial 

Results from the field trial showed a significant decrease in the number of germinating seedlings 

in October following early hay cuts. Crucially this difference was not seen in the manure treated 

plots, which were thought to decrease abundance with competitive exclusion. This indicates that 

competitive exclusion may not impact seedling germination for the reasons stated above. 

Seed bank 

Seed bank analysis in Chapter 3 indicates that the seed bank is short lived. This is important as a 

long lived seed bank would allow germination from the seed bank and therefore preventing seed 

set by early cutting would not be an effective short-term treatment. This again fits with the theory 

that the early cut is reducing s. aquaticus populations by preventing seed set. 

Time afcut 

Cutting experiments revealed that the time of hay cut is critical in determining the amount of 

seed produced per plant. All plants cut after the 16th June died and did not flower again. However 

if plants were cut on or before the 1st 
June, they recovered, flowered and produced viable seed. 

The earlier they were cut, the more seed they were able to produce on re-flowering, presumably 

because they had committed less of their reserves at the earlier stage. The timing of cutting date 

is therefore crucial to prevent seed set. The cut should be as late as possible to prevent re

flowering, but happen before seeds have become viable and set. Because of this lag time between 

viability and seed set, results indicate that the best time to do the hay cut would be around or just 

before the 16
th 

June. This is supported by the evidence from the field trial which found cutting on 
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the 15th June significantly reduced ragwort abundance. It is possible that the optimum date may 

vary slightly with seasonal weather conditions, so it may be beneficial to monitor the ragwort in 

the field and adjust the date accordingly. 100% of plants in this study died after seed set. These 

results fit with the theory that early hay cut is reducing S. aquaticus populations by preventing 

them seeding. 

Sword competition 

Analysis of the sward (Chapter 4) revealed that early hay cut had little effect on the sward 

composition. Unlike the manure treatment there was no increase in competitive grasses which 

would be expected if competitive exclusion was causing the reduction in population. In fact, 

cutting seemed to reduce the number of these competitive grass species; for example Agrostis 

stofoni/era and Phfeum pratense. 

5.2.3 Drainage 

The "drain" treatment increased the number of S. aquaticus plants present. This is surprising as 

the treatment aimed to competitively exclude the ragwort by increasing soil aeration, thereby 

reducing stress, increasing nutrient availability and promoting more competitive species. The 

"drain" treatment did not achieve that. S.aquaticus did however correlate with SEV's and water 

table suggesting that water table is a driver in explaining its abundance. This lack of effect with 

drainage could be because the gutters were not functioning properly and did not lower water 

tables sufficiently to encourage the more competitive species. They were shallow on some sites 

and did have a tendency to block up easily. This could mean that they were not getting rid of the 

surface water as required and therefore did not extend the growing season. 

Another explanation could be that aeration stress is not the limiting factor for these competitive 

species. As the manure application was the treatment that most increased these competitive 

species it suggests that nutrient availability is the limiting factor for their growth. Although 
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drainage can increase nutrient availability through increased mineralisation, it is possible that it 

did not do this or achieve it to a level where it could give the competitive advantage to other 

species. 

Sward analysis 

Analysis of the plant community revealed that there was community change with drainage. 

Grasses and forbs that prefer drier conditions, such as Anthoxanthum odoratum and Festuca 

pratensis, increased in abundance and plants that tolerate wetter conditions, such as Glyceria 

fluitans and Polygonum amphibium decreased. This indicated that the gutters were functioning. 

It seems most likely from analysis of the plant community that, although the gutters are changing 

the community composition, they are not favouring the competitive species that would be 

needed to reduce the ragwort. This suggests that they are nutrient limited rather that limited by 

aeration stress. 

There were also problems with the experimental design. On one of the sites, the guttered fields 

had water tables higher than the unguttered ones. Water-table data were used as covariates in 

the analysis to try and remove this effect, but it may still have influenced the results 

This of course does not explain why there was an increase in S. aquaticus plants with drainage. 

One theory for this is that the process of creating the gutters causes disturbance that could be 

creating gaps in the sward and thus allowing S. aquaticus to flourish. 

5.2.4 Lime 

Lime application had no effect on S. aquaticus populations. This indicated it did not have the 

desired effect of causing competitive exclusion. Community analysis revealed that lime did change 

the plant community, but instead of favouring the bulky grasses needed for competitive 

exclusion, it encourages forbs, legumes and less competitive grasses. As with the drainage, it 
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seems likely that although lime is increasing pH and allowing less acid tolerant plants to come in, 

it is not increasing mineralisation enough to relieve the nutrient limitation which is restraining the 

competitive species. 

5.3 Impact 0/ treatments on the wider plant community 

It is vital that any treatments used do not negatively impact the wider plant community. Results 

indicate that, of the treatments tria lied, manure had a negative impact on the nature

conservation value of the plant community whilst early hay cay cut, lime and drain had positive 

effects. 

Manure significantly decreased species richness, diversity and similarity to the published MG8 

constancy table. It increased the more aggressive grass species such as Agrostis st%ni/ero, and 

although it reduced S. aquoticus, it also reduced a number of other species important to the MG8 

community notably the forbs. For this reason, it is not a good candidate as a control method for s. 

aquaticus. 

Early hay cuts however had no negative impact on the MG8 community and indeed was 

associated with an increase in forbs and less competitive grasses such as Festuca rubro, which are 

typical of species-rich forms of the MG8 community. This treatment is therefore a much better 

candidate than manure for use in S. oquaticus control in species-rich communities. 

Although drainage and lime did not reduce s. aquaticus populations they did both have positive 

impacts on the plant community, increasing species-richness and similarity to the MG8 

community. Therefore although they are not useful s. aquaticus control methods, they could be 

used to improve the botanical interest of these species-rich meadows. 
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5.4 Problems with early hay cut 

The results indicate that the early hay cut is the best control method of those tria lied because it is 

best both at reducing S. aquaticus abundance and has no negative impacts On the species-rich 

community. However there are several problems associated with its use: 
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5.4.1 Practical and economic problems 

There are practicalities of undertaking this treatment which could potentially make it difficult to 

apply in the field. Farmers need a dry enough spring in able to be able to physically get machinery 

on the land to do the cut early. Where the weather has been too wet, it can be impossible to 

access the fields early enough to undertake the early cut before the ragwort has set seed. Going 

on the fields when it is too wet could not only result in machinery getting stuck, but also 

potentially cause compaction and damage to the sward. Soil compaction has been demonstrated 

to reduce species richness (Moore, unpublished observations). There is likely to be damage to the 

sward itself from the machinery which, on one hand could cause damage to the MG8 community, 

but on the other could create a "gappy" sward and therefore ideal conditions for ragwort 

germination. It is possible that a few early flowering individuals could therefore set seed and take 

advantage of these gaps. This could potentially be mitigated against by using the drainage gutters 

along with this treatment to help reduce the water table sufficiently to get on to the land to 

perform the treatments. 

Taking a hay crop also requires a period of dry weather, so the hay can be cut and dried in the 

field before being baled and taken away. If there is wet weather in this critical window it could be 

impossible to take a viable hay crop at that time. This could lead to economic loss for the farmer. 

In situations such as these the farmer may need to weigh up the benefits of the treatment. In 

heavy infestations the crop would potentially be lost anyway due to contamination with ragwort, 

if no mitigating methods such as hand pulling are employed. In these cases, it might be better to 

cut early and dispose of the crop to enable successful hay crops in subsequent years. In light 

infestations, it might be better to delay treatment for a year in order to take a successful hay 

crop. As the early hay cut takes two consecutive years of treatment, if one year has been already 

invested in the treatment, it might make more sense to take the loss and complete the treatment 

in these situations. 

It may also be possible to take a silage crop as this does not require the period of drying. This also 

has the advantage that, under the right conditions, S. aquaticus toxins can be broken down. Early 
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hay cuts significantly reduced the yield of the field as a result of cutting early. This will result in a 

loss of revenue to the farmer. However, where there are high infestations, the crop would 

potentially be lost anyway as it is not a suitable feed stuff. The problem with taking a highly 

infested crop is that as it cannot be used as feed and therefore has to be disposed of. The cost of 

disposal of these crops can be significant. Some farmers however are happy to use these crops as 

bedding. It has been suggested that one way to lessen the waste of the crop and loss from 

disposal would be to let cattle into the field to graze before the hay cut. S. oquoticus is 

unpalatable to cattle, so they will selectively ignore it. When they have eaten the majority of the 

sward down, a hay cut could then be undertaken to prevent the S. oquoticus plants setting seed 

and this cut disposed of. One possible problem with letting cattle on to early is that if the ground 

is still wet it could result in poaching creating gaps in the sward. Grazing the sward prior to the 

hay cut might also impact the time of flowering and subsequent seed set, so this would need to 

be trialled. Another suggestion is to graze with sheep which would eat the S. oquoticus and this 

has been undertaken on the Derwent, though no monitoring of this has taken place. Again, as 

sheep eat the S. oquoticus, it might result in regrowth which can occur with defoliation earlier in 

the growing season (Chapter 2). This could result in successful seed set. 

5.4.2 Problems for other Wildlife 

As well as being botanically very rich, Sedgemoor and MG8 sites are important sites for birds, 

especially breeding waders. Many of these sites are managed for their bird interest and a 

significant proportion of West Sedgemoor is managed by the RSPB, which as an organisation has a 

major interest in the wellbeing of birds. Breeding waders such as snipe and curlew are ground 

nesting in the MG8 sward and, at the time of the early hay cut on the 15th of June, some may still 

have chicks. Undertaking a hay cut at this time may therefore result in mortality in these chicks. 

Indeed Natural England often ask that hay cuts are not undertaken before the 1st of July in order 

to protect ground nesting birds. 
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Although this is potentially a major problem, the sites are well monitored for their bird interest 

and birds such as snipe are rare. This means that the approximate locations of nests are usually 

known by land managers such as the RSPB and Natural England. Thus it is possible to avoid 

cutting fields with nests or to cut around them. During the course of this trial, snipe nested in one 

of the treatment blocks. Rope dragging was used to locate the exact place of the nest (dragging a 

rope across the field and watching for the parent to fly up). The local area surrounding the nest 

was then avoided in the early hay cut. It is worth noting that the birds need the traditionally 

managed meadows, so loss ofthis type of management due to high ragwort infestations would 

result in loss of habitat for them as well. Therefore controlling 5. aquaticus abundance is 

beneficial for them. 

Despite these problems, early hay cut appears to be an excellent candidate for use as a 5. 

aquaticus control method. The problems identified can be mitigated against. Economic loss can 

be offset against the benefit in future years and the benefit to wildlife, and indeed many of these 

farms are in agri-environment schemes. Problems to ground nesting birds can be mitigated 

against by careful monitoring. 

5.5 Recommendations 

It is recommended that the best method of 5. aquaticus control is early hay cut on or around the 

15th of June, preventing the plants from setting seed. This is because a) it is the most effective 

treatment at reducing S. aquaticus populations and b) unlike the manure treatment; it has been 

demonstrated not to negatively affect the species-rich meadows on which 5. aquaticus occurs. 

Early hay cut needs to be undertaken for two years for the treatment to be effective as the plant 

has a 2-year life cycle. It has been demonstrated that the timing of this hay cut is crucial as plants 

cut too early can go on to re-flower and produce more seed. Whilst plants cut too late may have 

already set seed. 
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5.6 Further work 

5.6.1 Monitoring of S. aquaticus populations after treatment has finished 

Early hay cut significantly reduced S. aquaticus abundance after a two year period. However, it is 

not known how long this reduction in abundance will last. This is obviously important to know, 

especially if farmers will suffer economic loss as a result of the treatment and ground nesting 

birds may be adversely affected. Effort should not be put into a control method that only holds 

for a short length of time. It is recommended therefore that further work is carried out to 

investigate the longer term effect of the treatment. It is recommended that monitoring of the 

field trial is continued after the early hay cut trial has ceased. It would also be useful to continue 

to monitor the sward to see if any long term changes relating to the treatment occur. 

5.6.2 Continuing treatment for subsequent years 

Early hay cuts significantly reduced the number of S. aquaticus plants in the study by reducing the 

number of seeds produced. However it did not eliminate S. aquaticus from the sward, but only 

reduced it by 50%. Reduction increased over the treatment period. It may be possible to reduce 

the number of plants further, or even eliminate them entirely, by continuing the treatments for 

subsequent years. A field trial could be set up to investigate the impact of continuing the 

treatment on the S. aquaticus populations. Monitoring of the plant community should also be 

undertaken to make sure long term use ofthe early cut treatment is not affecting the sward. 

5.6.3 Seed dispersal through flooding 

S. aquaticus appears to be fairly poor at wind dispersal of seed. This was supported by evidence 

from the field trial. Plots were relatively small, 40 m x 40 m, and seed did not disperse from 

control plots to early hay cut plots when they were adjacent. There is concern however that 

flooding could transport seed. The Somerset Levels are frequently subject to both summer and 
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winter floods. During the course of the field trial, the sites underwent winter flooding which did 

not appear to spread the seed. However, it is possible that summer flooding, which can occur at 

the time of ragwort seed set, could. Obviously if seed could be dispersed in this way, it would 

have implications for the early hay cut as a control method. This should therefore be investigated 

further, perhaps using sediment mats to trap any seeds in the flood water. 

5.6.4 Investing impact on the invertebrate community 

Species-rich meadows support a wide and diverse invertebrate community. Although results from 

this study indicate the early hay cut does not harm the plant community, it is not known what 

impacts it might have on the invertebrate community. Cutting early may limit food sources, cause 

direct mortality and prevent insects completing their life cycle. Indeed S. aquaticus has itself been 

shown to support a wide variety of invertebrates, so a reduction ofthis host brought about by the 

treatments might impact invertebrate communities. An initial pilot study was undertaken in 2005 

to investigate this, but it was abandoned due to the lack of significant results. It was considered 

that the 40 m x 40 m plots would be too small to show invertebrate change due to the mobility of 

these organisms. It is therefore recommended that a field trial with larger treatment plots should 

be set up to investigate the impact of early hay cut on the invertebrate community. 
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Appendices 

Appendix 1 Chapter 2 GLM, GLM repeated 
measures and Generalised mixed model tables 

GLM Tahle for Soil pH 

Tests of Between-Subjects Effects 

Dependent Variable:Ph 

Type III Sum 

Source of Squares 

Corrected Model 9.865a 

Intercept 1973.062 

cut .006 

lime 8.794 

Manure .132 

Drain .001 

cut * lime .019 

cut * Manure .020 

cut * Drain .059 

lime * Manure .419 

lime * Drain .069 

Manure * Drain .094 

cut • lime * Manure .004 

cut • lime * Drain .086 

cut • Manure * Drain .042 

Lime * Manure * Drain .023 

cut * lime • Manure * .096 

Drain 

Error 4.539 

Total 1987.466 

Corrected Total 14.404 

df Mean Square F Sig. 

15 .658 4.636 .000 
1 1973.062 13909.702 .000 

1 .006 .040 .842 

1 8.794 61.994 .000 

1 .132 .929 .342 

1 .001 .010 .923 

1 .019 .134 .717 

1 .020 .142 .708 

1 .059 .417 .523 

1 .419 2.954 .095 
1 .069 .489 .489 
1 .094 .663 .421 

1 .004 .030 .863 
1 .086 .608 .441 

1 .042 .298 .589 
1 .023 .160 .691 
1 .096 .676 .417 

32 .142 

48 

47 
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GLM TaMe {or Plant available Phosphorous 

Tests of Between-Subjects Effects 

Dependent Variable'P 

Type III Sum 

Source of Squares df Mean Square F Sig. 

Corrected Model 696. 198a 15 46.413 1.504 .162 

Intercept 7767.406 1 7767.406 251.643 .000 

cut 38.429 1 38.429 1.245 .273 

Lime 104.348 1 104.348 3.381 .075 

Manure 89.697 1 89.697 2.906 .098 

Drain .129 1 .129 .004 .949 

cut· Lime 2.964 1 2.964 .096 .759 

cut· Manure .286 1 .286 .009 .924 

cut· Drain 4.189 1 4.189 .136 .715 

Lime • Manure 154.851 1 154.851 5.017 .032 

Lime • Drain 105.742 1 105.742 3.426 .073 

Manure • Drain 88.369 1 88.369 2.863 .100 

cut • Lime • Manure 8.167 1 8.167 .265 .611 

cut • Lime • Drain 72.472 1 72.472 2.348 .135 

cut • Manure • Drain 20.260 1 20.260 .656 .424 

Lime • Manure • Drain 3.365 1 3.365 .109 .743 

cut • Lime • Manure • 2.928 1 2.928 .095 .760 

Drain 

Error 987.737 32 30.867 

Total 9451.341 48 

Corrected Total 1683.935 47 

a. R Squared = .413 (Adjusted R Squared = .138) 
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GLM Tuhle lor Senecio abundance with treatments 2007 

Tests of Between-Subjects Effects 

Dependent Variable:logtotal07 

Tvpe III Sum 

Source of Squares df Mean Square F Sig. 

Corrected Model 6.024a 16 .376 5.260 .000 

Intercept 3.689 1 3.689 51.548 .000 

raglog04 .130 1 .130 1.818 .187 

cut 3.831 1 3.831 53.532 .000 

Lime .060 1 .060 .834 .368 

Manure 1.146 1 1.146 16.015 .000 

Drain .081 1 .081 1.131 .296 

cut· lime .074 1 .074 1.039 .316 

cut· Manure 2.596E-7 1 2.596E-7 .000 .998 

cut· Drain .050 1 .050 .698 .410 

lime • Manure .284 1 .284 3.971 .055 

lime· Drain .000 1 .000 .006 .940 

Manure • Drain .018 1 .018 .256 .617 

cut • lime • Manure .042 1 .042 .592 .447 

cut • lime • Drain 9.521E-5 1 9.521E-5 .001 .971 

cut • Manure • Drain .096 1 .096 1.346 .255 

lime • Manure • Drain .185 1 .185 2.591 .118 

cut • Lime • Manure • .114 1 .114 1.587 .217 

Drain 

Error 2.219 31 .072 

Total 34.453 48 

Corrected Total 8.242 47 

a. R Squared = .731 (Adjusted R Squared = .592) 
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GLM Tohle lor Senecio abundance with treatments 2007 with SEV and water 

tahle covariates 

Tests of Between-Subjects Effects 

Dependent Variable·logtotal07 

Type 111 Sum 

Source of Squares 

Corrected Model 6.6098 

Intercept .156 

raglog04 .270 

SEVd .571 

SEVa .054 

meanWTD .133 

cut 3.926 

Lime .039 

Manure 1.276 

Drain .248 

cut • Lime .072 

cut· Manure .003 

cut· Drain .064 

lime • Manure .204 

lime· Drain .004 

Manure • Drain .030 

cut • Lime • Manure .077 

cut • Lime • Drain .002 

cut • Manure • Drain .035 

Lime • Manure • Drain .157 

cut • Lime • Manure • .137 

Drain 

Error 1.633 

Total 34.453 

Corrected Total 8.242 

df 

19 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

28 

48 

47 

a. R Squared = .802 (Adjusted R Squared = .667) 

Mean Square F Sig. 

.348 5.963 .000 

.156 2.673 .113 

.270 4.620 .040 

.571 9.783 .004 

.054 .933 .342 

.133 2.280 .142 

3.926 67.301 .000 

.039 .671 .420 

1.276 21.873 .000 

.248 4.244 .049 

.072 1.232 .277 

.003 .049 .827 

.064 1.098 .304 

.204 3.504 .072 

.004 .070 .793 

.030 .516 .479 

.077 1.321 .260 

.002 .038 .848 

.035 .594 .447 

.157 2.698 .112 

.137 2.345 .137 

.058 
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GLM Tuhle (or Senecio abundance with treatments 2004 

Tests of Between-Subjects Effects 

Dependent Variable:raglog04 

Type III Sum 

Source of Squares 

Corrected Model 1.622i 

Intercept 20.593 

cut .057 

Lime .559 

Manure .154 

Drain .103 

cut * Lime .001 

cut * Manure .156 

cut * Drain .001 

Lime * Manure .002 

Lime * Drain .018 

Manure * Drain .088 

cut * Lime * Manure .007 

cut * Lime * Drain .103 

cut * Manure * Drain .314 

lime * Manure * Drain .006 

cut * Lime * Manure * .052 

Drain 

Error 4.902 

Total 27.118 

Corrected Total 6.524 

df 

15 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

32 

48 

47 

a. R Squared = .249 (Adjusted R Squared = -.104) 

Mean Square F 

.108 .706 

20.593 134.419 

.057 .375 

.559 3.649 

.154 1.006 

.103 .670 

.001 .008 

.156 1.021 

.001 .008 

.002 .016 

.018 .115 

.088 .577 

.007 .049 

.103 .670 

.314 2.047 

.006 .037 

.052 .339 

.153 

Sig. 

.760 

.000 

.545 

.065 

.323 

.419 

.930 

.320 

.930 

.901 

.737 

.453 

.826 

.419 

.162 

.849 

.564 
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GLM Tahle lar ,")Cllcio abundance with treatments 2005 

Tests of Between-Subjects Effects 

Dependent Variable'log2005 

Type 11\ Sum 

Source of Squares 

Corrected Model 1.302a 

Intercept 1.503 

raglog04 .131 

cut .008 

Lime .384 

Manure .061 

Drain .040 

cut • Lime .108 

cut • Manure .054 

cut • Drain .005 

Lime • Manure .105 

lime • Drain .002 

Manure • Drain .041 

cut • Lime • Manure .000 

cut • Lime • Drain .015 

cut • Manure • Drain .000 

Lime • Manure • Drain .119 

cut • Lime • Manure • .010 

Drain 

Error 1.763 

Total 15.571 

Corrected Total 3.066 

df 

16 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

31 

48 

47 

a. R Squared = .425 (Adjusted R Squared = .128) 

Mean Square 

.081 

1.503 

.131 

.008 

.384 

.061 

.040 

.108 

.054 

.005 

.105 

.002 

.041 

.000 

.015 

.000 

.119 

.010 

.057 

F Sig. 

1.431 .191 

26.414 .000 

2.297 .140 

.134 .717 

6.759 .014 

1.080 .307 

.706 .407 

1.902 .178 

.946 .338 

.092 .764 

1.844 .184 

.027 .871 

.722 .402 

.007 .932 

.267 .609 

.003 .957 

2.098 .157 

.169 .684 
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GLM Table for Sencio abundance with treatments 2006 

Tests of Between-Subjects Effects 

Dependent Variable:logtotal06 

Type III Sum 

Source of Squares 

Corrected Model 5.084a 

Intercept 4.189 

raglog04 .037 

cut 2.129 

Lime .071 

Manure 1.274 

Drain .042 

cut * Lime .208 

cut * Manure .002 

cut * Drain .016 

Lime * Manure .516 

Lime * Drain .052 

Manure * Drain .091 

cut * Lime * Manure .063 

cut * Lime * Drain .045 

cut * Manure * Drain .232 

Lime * Manure * Drain .201 

cut * Lime * Manure * .076 

Drain 

Error 2.870 

Total 33.569 

Corrected Total 7.955 

df 

16 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

31 

48 

47 

a. R Squared = .639 (Adjusted R Squared = .453) 

Mean Square 

.318 

4.189 

.037 

2.129 

.071 

1.274 

.042 

.208 

.002 

.016 

.516 

.052 

.091 

.063 

.045 

.232 

.201 

.076 

.093 

F Sig. 

3.432 .002 

45.244 .000 

.398 .533 

22.994 .000 

.769 .387 

13.757 .001 

.451 .507 

2.242 .144 

.021 .887 

.176 .678 

5.575 .025 

.565 .458 

.983 .329 

.680 .416 

.484 .492 

2.506 .124 

2.174 .150 

.822 .372 

Page 1183 



GLM Table for total Senecio abundance Oct 2006 

Tests of Between-Subjects Effects 

Dependent Variable:oct06seedlogRtotal 

Type III Sum 

Source of Squares 

Corrected Model 10.377i 

Intercept 10.726 

raglog04 .071 

cut 6.646 

Lime .260 

Manure .777 

Drain .229 

cut * Lime .174 

cut * Manure .009 

cut * Drain .077 

Lime * Manure .073 

Lime * Drain .183 

Manure * Drain .000 

cut * Lime * Manure .111 

cut * Lime * Drain .013 

cut * Manure * Drain .265 

lime * Manure * Drain .879 

cut * lime * Manure * .377 

Drain 

Error 8.799 

Total 67.081 

Corrected Total 19.176 

df 

16 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

31 

48 

47 

a. R Squared = .541 (Adjusted R Squared = .304) 

Mean Square 

.649 

10.726 

.071 

6.646 

.260 

.777 

.229 

.174 

.009 

.077 

.073 

.183 

.000 

.111 

.013 

.265 

.879 

.377 

.284 

F Sig. 

2.285 .024 

37.792 .000 

.251 .620 

23.416 .000 

.916 .346 

2.738 .108 

.807 .376 

.612 .440 

.031 .861 

.270 .607 

.259 .615 

.645 .428 

.001 .972 

.390 .537 

.046 .831 

.933 .342 

3.096 .088 

1.330 .258 
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GLM Table for total Senecio abundance Oct 07 

Tests of Between-Subjects Effects 

Dependent Variable:log07octrtotal 

Type III Sum 

Source of Squares df Mean Square F Sig. 

Corrected Model 7.1473 16 .447 1.646 .114 

Intercept 2.287 1 2.287 8.427 .007 

raglog04 .267 1 .267 .984 .329 

cut 4.223 1 4.223 15.563 .000 

lime .104 1 .104 .382 .541 

Manure .016 1 .016 .058 .811 
Drain .243 1 .243 .897 .351 
cut· Lime .171 1 .171 .630 .433 
cut· Manure .092 1 .092 .340 .564 
cut· Drain .003 1 .003 .013 .911 

lime • Manure .076 1 .076 .281 .600 
Lime· Drain .185 1 .185 .682 .415 

Manure • Drain .551 1 .551 2.031 .164 

cut • lime • Manure .048 1 .048 .177 .677 

cut • lime • Drain .008 1 .008 .028 .868 

cut • Manure • Drain .067 1 .067 .247 .623 

Lime • Manure * Drain .686 1 .686 2.528 .122 

cut • lime • Manure • .426 1 .426 1.568 .220 
Drain 

Error 8.412 31 .271 

Total 35.879 48 

Corrected Total 15.559 47 

a. R Squared = .459 (Adjusted R Squared = .180) 
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GLM Table for Juveniles 2005 

Tests of Between-Subjects Effects 

Dependent Variable:logjevenile05 

Type III Sum 

Source of Squares 

Corrected Model 1.108a 

Intercept 1.114 

raglog04 .043 

cut .035 

Lime .289 

Manure .136 

Drain .107 

cut * Lime .191 

cut * Manure .033 

cut * Drain .001 

Lime * Manure .108 

Lime * Drain 8.198E-5 

Manure * Drain .011 

cut * Lime * Manure .004 

cut * Lime * Drain .001 

cut * Manure * Drain .000 

Lime * Manure * Drain .046 

cut * Lime * Manure * .012 

Drain 

Error 1.694 

Total 10.832 

Corrected Total 2.802 

df 

16 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

31 

48 

47 

a. R Squared = .396 (Adjusted R Squared = .084) 

Mean Square F Sig. 

.069 1.268 .277 

1.114 20.393 .000 

.043 .792 .380 

.035 .639 .430 

.289 5.282 .028 

.136 2.481 .125 

.107 1.952 .172 

.191 3.491 .071 

.033 .600 .444 

.001 .016 .900 

.108 1.981 .169 

8.198E-5 .002 .969 

.011 .198 .660 

.004 .078 .782 

.001 .012 .912 

.000 .003 .957 

.046 .849 .364 

.012 .214 .647 

.055 
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GLM Table for Juveniles 2006 

Tests of Between-Subjects Effects 

Dependent Variable:logjuvenile06 

Type III Sum 

Source of Squares 

Corrected Model 4.687a 

Intercept 2.367 

raglog04 .053 

cut 1.949 

lime .006 

Manure 1.314 

Drain .019 

cut * lime .107 

cut * Manure .019 

cut * Drain .112 

lime * Manure .536 

lime * Drain .045 

Manure * Drain .023 

cut * lime * Manure .073 

cut * Lime * Drain .013 

cut * Manure * Drain .198 

Lime * Manure * Drain .209 

cut * lime * Manure * .040 

Drain 

Error 2.129 

Total 22.663 

Corrected Tota I 6.815 

df 

16 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

31 

48 

47 

a. R Squared = .688 (Adjusted R Squared = .526) 

Mean Square F Sig. 

.293 4.266 .000 

2.367 34.473 .000 

.053 .773 .386 

1.949 28.379 .000 

.006 .083 .775 

1.314 19.141 .000 

.019 .283 .599 

.107 1.553 .222 

.019 .274 .604 

.112 1.637 .210 

.536 7.802 .009 

.045 .654 .425 

.023 .338 .565 

.073 1.070 .309 

.013 .195 .662 

.198 2.890 .099 

.209 3.045 .091 

.040 .583 .451 

.069 
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GLM Table for Oct juveniles 06 

Tests of Between-Subjects Effects 

Dependent Va ria ble :oct06seedlogRtotaI 

Type III Sum 

Source of Squares 

Corrected Model 10.377a 

Intercept 10.726 

raglog04 .071 

cut 6.646 

lime .260 

Manure .777 

Drain .229 

cut * Lime .174 

cut * Manure .009 

cut * Drain .077 

lime * Manure .073 

lime * Drain .183 

Manure * Drain .000 

cut * lime * Manure .111 

cut * lime * Drain .013 

cut * Manure * Drain .265 

Lime * Manure * Drain .879 

cut * lime * Manure * .377 

Drain 

Error 8.799 

Total 67.081 

Corrected Total 19.176 

df 

16 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

31 

48 

47 

a. R Squared = .541 (Adjusted R Squared = .304) 

Mean Square F Sig. 

.649 2.285 .024 

10.726 37.792 .000 

.071 .251 .620 

6.646 23.416 .000 

.260 .916 .346 

.777 2.738 .108 

.229 .807 .376 

.174 .612 .440 

.009 .031 .861 

.077 .270 .607 

.073 .259 .615 

.183 .645 .428 

.000 .001 .972 

.111 .390 .537 

.013 .046 .831 

.265 .933 .342 

.879 3.096 .088 

.377 1.330 .258 

.284 
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GLM Table for Juveniles 2007 

Tests of Between-Subjects Effects 

Dependent Variable:logjuv07 

Type III Sum 

Source of Squares 

Corrected Model 6.008a 

Intercept 1.562 

raglog04 .130 

cut 4.402 

Lime .036 

Manure .570 

Drain .052 

cut * Lime .096 

cut * Manure .039 

cut * Drain .0lD 

Lime * Manure .300 

Lime * Drain .013 

Manure * Drain .002 

cut * Lime * Manure .066 

cut * Lime * Drain .004 

cut * Manure * Drain .077 

Lime * Manure * Drain .168 

cut * Lime * Manure * .142 

Drain 

Error 1.722 

Total 20.615 

Corrected Total 7.729 

df 

16 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

31 

48 

47 

a. R Squared = .777 (Adjusted R Squared = .662) 

Mean Square F Sig. 

.375 6.761 .000 

1.562 28.134 .000 

.130 2.342 .136 

4.402 79.258 .000 

.036 .647 .427 

.570 10.266 .003 

.052 .931 .342 

.096 1.732 .198 

.039 .709 .406 

.0lD .178 .676 

.300 5.399 .027 

.013 .228 .637 

.002 .030 .864 

.066 1.197 .282 

.004 .074 .788 

.077 1.380 .249 

.168 3.033 .091 

.142 2.562 .120 

.056 
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GLM Table for Oct juveniles 07 

Tests of Between-Subjects Effects 

Dependent Variable:octlogJT 

Type III Sum 

Source of Squares 

Corrected Model 3.5593 

Intercept 2.969 

raglog04 6.550E-8 

cut 1.624 

Lime .076 

Manure .838 

Drain .043 

cut * lime .090 

cut * Manure .001 

cut * Drain .018 

Lime * Manure .276 

Lime * Drain .054 

Manure * Drain 3.235E-5 

cut * lime * Manure .009 

cut * lime * Drain .002 

cut * Manure * Drain .134 

Lime * Manure * Drain .218 

cut * Lime * Manure * .109 

Drain 

Error 1.813 

Total 20.808 

Corrected Total 5.372 

df 

16 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

31 

48 

47 

a. R Squared = .662 (Adjusted R Squared = .488) 

Mean Square F Sig. 

.222 3.802 .001 

2.969 50.754 .000 

6.S50E-8 .000 .999 

1.624 27.757 .000 

.076 1.305 .262 

.838 14.319 .001 

.043 .743 .395 

.090 1.540 .224 

.001 .023 .879 

.018 .301 .587 

.276 4.717 .038 

.054 .931 .342 

3.235E-5 .001 .981 

.009 .155 .697 

.002 .027 .870 

.134 2.299 .140 

.218 3.735 .062 

.109 1.864 .182 

.058 
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CLM Table for Adult 05 

Tests of Between-Subjects Effects 

Dependent Variable:logadult05 

Type III Sum 

Source of Squares 

Corrected Model .787a 

Intercept .048 

raglog04 .162 

cut .204 

lime .023 

Manure .002 

Drain .008 

cut * lime .022 

cut * Manure .012 

cut * Drain .035 

lime * Manure .002 

lime * Drain .005 

Manure * Drain .030 

cut * lime * Manure .029 

cut * lime * Drain .040 

cut * Manure * Drain .000 

lime * Manure * Drain .073 

cut * lime * Manure * .001 

Drain 

Error 1.036 

Total 3.571 

Corrected Total 1.823 

df 

16 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

31 

48 

47 

a. R Squared = .432 (Adjusted R Squared = .138) 

Mean Square F Sig. 

.049 1.471 .174 

.048 1.424 .242 

.162 4.839 .035 

.204 6.088 .019 

.023 .699 .409 

.002 .073 .789 

.008 .238 .629 

.022 .663 .422 

.012 .368 .548 

.035 1.041 .316 

.002 .049 .826 

.005 .141 .710 

.030 .895 .351 

.029 .855 .362 

.040 1.189 .284 

.000 .006 .941 

.073 2.190 .149 

.001 .036 .851 

.033 
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GLM Table for Adult 06 

Tests of Between-Subjects Effects 

Dependent Variable:logadult06 

Type III Sum 

Source of Squares 

Corrected Model 1.967a 

Intercept 1.717 

raglog04 .000 

cut .591 

Lime .170 

Manure .168 

Drain .067 

cut * Lime .165 

cut * Manure .002 

cut * Drain .028 

Lime * Manure .071 

Lime * Drain .057 

Manure * Drain .194 

cut * Lime * Manure .001 

cut * Lime * Drain .045 

cut * Manure * Drain .146 

Lime * Manure * Drain .124 

cut * Lime * Manure * .092 

Drain 

Error 1.805 

Total 12.501 

Corrected Total 3.772 

df 

16 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

31 

48 

47 

a. R Squared = .521 (Adjusted R Squared = .274) 

Mean Square F Sig. 

.123 2.111 .036 

1.717 29.481 .000 

.000 .005 .947 

.591 10.142 .003 

.170 2.927 .097 

.168 2.892 .099 

.067 1.155 .291 

.165 2.841 .102 

.002 .028 .867 

.028 .479 .494 

.071 1.215 .279 

.057 .976 .331 

.194 3.328 .078 

.001 .020 .890 

.045 .767 .388 

.146 2.511 .123 

.124 2.122 .155 

.092 1.573 .219 

.058 
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GLM Table for Adult 07 

Tests of Between-Subjects Effects 

d V' bl I d 107 Depen ent ana e: oga u t 

Type III Sum of 

Source Squares df Mean Square F 

Corrected Model 2.222a 16 .139 3.352 

Intercept 1.937 1 1.937 46.747 

raglog04 .022 1 .022 .530 

cut .919 1 .919 22.188 

lime .031 1 .031 .744 

Manure .820 1 .820 19.797 

Drain .031 1 .031 .756 

cut * Lime .016 1 .016 .395 

cut * Manure .009 1 .009 .217 

cut * Drain .094 1 .094 2.273 

lime * Manure .044 1 .044 1.053 

lime * Drain .005 1 .005 .121 

Manure * Drain .019 1 .019 .463 

cut * lime * Manure .000 1 .000 .006 

cut * lime * Drain .000 1 .000 .009 

cut * Manure * Drain .063 1 .063 1.515 

lime * Manure * Drain .123 1 .123 2.979 

cut * lime * Manure * Drain .025 1 .025 .597 

Error 1.284 31 .041 

Total 15.596 48 

Corrected Total 3.506 47 

a. R Squared = .634 (Adjusted R Squared = .445) 
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Repeated measures General linear model for total June Senecio counts from 2005 -
2007 

Type III Sum of Partial Eta 

Source Squares df Mean Square F Sig. Squared 

Intercept .593 1 .593 3.971 .056 .120 

SEVd .279 1 .279 1.870 .182 .061 

SEVa .004 1 .004 .024 .879 .001 

raglog04 .428 1 .428 2.863 .101 .090 

cut 3.798 1 3.798 25.416 .000 .467 

Lime .381 1 .381 2.549 .121 .081 

Manure 2.138 1 2.138 14.307 .001 .330 

Drain .441 1 .441 2.949 .097 .092 

cut * Lime .369 1 .369 2.472 .127 .079 

cut * Manure .006 1 .006 .038 .846 .001 

cut * Drain .039 1 .039 .264 .612 .009 

Lime * .718 1 .718 4.802 .037 .142 

Manure 

Lime * Drain .034 1 .034 .225 .639 .008 

Manure * .002 1 .002 .015 .903 .001 

Drain 

cut * Lime * .089 1 .089 .594 .447 .020 

Manure 

cut * Lime * .047 1 .047 .316 .578 .011 

Drain 

cut * Manure .144 1 .144 .964 .334 .032 

* Drain 

Lime * .430 1 .430 2.881 .100 .090 

Manure * 

Drain 

cut * Lime * .093 1 .093 .622 .437 .021 

Manure * 

Drain 

Error 4.334 29 .149 
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Generalized linear model for Total Senecio abundance 2005 

Parameter Estimates 

95% Wald Confidence Interval Hvpothesis Test 

Wald Chi-

Parameter B Std. Error Lower Upper Square df Sig. 

(Intercept) 2.825 .2134 2.406 3.243 175.147 1 .000 

[cut=1.00] -.012 .0632 -.136 .112 .034 1 .853 

[cut=2.00] 08 

[Lime=1.00] .609 .0706 .470 .747 74.290 1 .000 

[Lime=2.00] 08 

[Manure=1.00] .152 .0643 .026 .278 5.617 1 .018 

[Manure=2.00] 08 

[Drain=1.00] -.190 .0795 -.346 -.034 5.707 1 .017 

[Drain=2.00] 08 

siten .035 .0730 -.108 .178 .228 1 .633 

raglog04 .400 .1304 .145 .656 9.415 1 .002 

SEVd -.070 .0647 -.196 .057 1.155 1 .282 

SEVa -.093 .0514 -.193 .008 3.247 1 .072 

(Scale) 1b 

Generalized linear model for Total Senecio abundance 2006 

Parameter Estimates 

95% Wald Confidence Interval Hypothesis Test 

Wald Chi-

Parameter B Std. Error Lower Upper Square df Sia. 

(Intercept) 2.232 .1361 1.965 2.499 269.029 1 .000 

[cut=1.00] 1.265 .0473 1.172 1.358 715.924 1 .000 

[cut=2.00] 08 

[Lime=1.00] .136 .0425 .053 .220 10.293 1 .001 

[Lime=2.00] 08 

[Manure=1.00] .531 .0428 .447 .615 154.253 1 .000 

[Manure=2.00] 08 

[Drain=1.00] -.059 .0492 -.155 .038 1.434 1 .231 

[Drain=2.00] a· 
siten .331 .0459 .242 .421 52.189 1 .000 

raglog04 .857 .0760 .708 1.006 127.214 1 .000 

SEVd -.195 .0388 -.272 -.119 25.369 1 .000 

SEVa -.090 .0309 -.150 -.029 8.425 1 .004 

(Scale) 1b 
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Generu/i/L'd /inear model for Total Senecio abundance 2007 

Parameter Estimates 

95% Wald Confidence Interval Hypothesis Test 

Wald Chi-

Parameter B Std. Error Lower Upper Square df Sig. 

(Intercept) .830 .1407 .555 1.106 34.837 1 .000 

[cut=1.00) 1.620 .0529 1.517 1.724 938.576 1 .000 

[cut=2.00) o· 
[Lime=1.00) -.027 .0438 -.113 .059 .376 1 .540 

[Lime=2.00) o· 
[Manure=1.00) .906 .0464 .815 .997 381.580 1 .000 

[Manure=2.00) 0· 

[Drain=1.00) -.161 .0521 -.263 -.059 9.520 1 .002 

[Drain=200) o· 
siten .489 .0478 .395 .583 104.540 1 .000 

raglog04 1.014 .0802 .856 1.171 159.862 1 .000 

SEVd -.098 .0386 -.173 -.022 6.420 1 .011 

SEVa .019 .0313 -.042 .080 .377 1 .539 

(Scale) 1b 
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Appendix 3 Chapter 3 GLM tables 

Gl.M lin Cuttinp experiment:- Total Viable seed production in relation to 

time (II cut 

Between-Subjects Factors 

N 

Cut 1.00 42 

2.00 41 

3.00 42 

4.00 41 

5.00 42 

6.00 83 

Tests of Between-Subjects Effects 

o de tV' bl total' bl eecI )eoenc n ana e: VIa es s 

Type III Sum of 

Source Squares df Mean Square 

Corrected Model 160752.378- 5 32150.476 

Intercept 765015.526 1 765015.526 

Cut 160752.378 5 32150.476 

Error 634936.468 285 2227.847 

Total 1586067.803 291 

Corrected Total 795688.846 290 

a. R Squared = .202 (Adjusted R Squared = .188) 

Total viable seeds 

Student-Newman-Keuls··b
.
c 

Subset 

Cut N 1 2 

3.00 42 20.0100 

2.00 41 33.6666 33.6666 

100 42 45.0564 

600 83 47.1413 

500 42 

400 41 

SiQ. .169 .364 

3 

79.2224 

92.9895 

.166 

F Sia. 

14.431 .000 

343.388 .000 

14.431 .000 
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Total viable seeds 

Student-Newman-Keuls8
.
b
.
c 

Subset 

Cut N 1 2 

3.00 42 20.0100 

2.00 41 33.6666 33.6666 

1.00 42 45.0564 

6.00 83 47.1413 

5.00 42 

4.00 41 

Sig. .169 .364 

GLM table for variation in root 

competition WxW with gap size 

3 

79.2224 

92.9895 

.166 

Tests of Between-Subjects Effects 

v . bl Dependent ana e:tota 

Type III Sum of 

Source SQuares df Mean SQuare 

Corrected Model 227.5758 5 45.515 

Intercept 526.105 1 526.105 

rootcomp 80.113 1 80.113 

gap 108.259 2 54.129 

rootcomp * gap 36.619 2 18.310 

Error 162.525 42 3.870 

Total 962.035 48 

Corrected Total 390.101 47 

a. R Squared = .583 (Adjusted R Squared = .534) 

total 

Student Newman Keuls··b
.
C - -

Subset 

gap N 1 2 3 

1.00 15 1.5983 

2.00 17 3.3339 

3.00 16 5.3148 

SiQ. 1.000 1.000 1.000 

F Sia. 

11.762 .000 

135.957 .000 

20.703 .000 

13.988 .000 

4.732 .014 
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Appendix 3 Chapter 4 GLM tables 

GLM Table for Species richness with treatment 

Tests of Between-Subjects Effects 

Dependent Va ria ble :logspeciesrich07 

Type III Sum 

Source of Squares 

Corrected Model . 341a 

Intercept .033 

siten .110 

SEVd .027 

SEVa .029 

meanWTD .020 

cut 5.976E-6 

lime .007 

Manure .030 

Drain .022 

cut * lime .001 

cut * Manure .008 

cut * Drain .001 

lime * Manure .003 

lime * Drain .001 

Manure * Drain 4.90lE-6 

cut * lime * Manure .015 

cut * lime * Drain .003 

cut * Manure * Drain .001 

lime * Manure * Drain .028 

cut * lime * Manure * .001 

Drain 

Error .103 

Total 66.479 

Corrected Total .444 

df 

19 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

28 

48 

47 

a. R Squared = .767 (Adjusted R Squared = .610) 

Mean Square 

.018 

.033 

.110 

.027 

.029 

.020 

5.976E-6 

.007 

.030 

.022 

.001 

.008 

.001 

.003 

.001 

4.901E-6 

.015 

.003 

.001 

.028 

.001 

.004 

F Sig . 

4.861 .000 

9.051 .006 

29.824 .000 

7.253 .012 

7.828 .009 

5.383 .028 

.002 .968 

1.987 .170 

8.083 .008 

6.094 .020 

.263 .612 

2.069 .161 

.241 .627 

.843 .366 

.200 .658 

.001 .971 

4.005 .055 

.701 .410 

.315 .579 

7.598 .010 

.223 .640 
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GLM Table for Simpson's Diversity index with treatment 

Tests of Between-Subjects Effects 

Dependent Variable·Simpson 

Type III Sum 

Source of Squares 

Corrected Model 78.498a 

Intercept .761 

siten 15.592 

SEVd 10.894 

SEVa 9.371 

meanWTD 4.213 

cut .078 

lime 4.990 

Manure 11.524 

Drain 18.201 

cut * lime .050 

cut * Manure 6.689 

cut * Drain 2.059 

lime * Manure .029 

lime * Drain 2.395 

Manure * Drain .634 

cut * Lime * Manure .067 

cut * Lime * Drain .127 

cut * Manure * Drain 2.361 

lime * Manure * Drain 7.875 

cut * Lime * Manure * .616 

Drain 

Error 62.543 

Total 1762.842 

Corrected Total 141.041 

df 

19 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

28 

48 

47 

a. R Squared = .557 (Adjusted R Squared = .256) 

Mean Square F 

4.131 1.850 

.761 .341 

15.592 6.980 

10.894 4.877 

9.371 4.195 

4.213 1.886 

.078 .035 

4.990 2.234 

11.524 5.159 

18.201 8.148 

.050 .023 

6.689 2.995 

2.059 .922 

.029 .013 

2.395 1.072 

.634 .284 

.067 .030 

.127 .057 

2.361 1.057 

7.875 3.526 

.616 .276 

2.234 

Sig. 

.068 

.564 

.013 

.036 

.050 

.181 

.854 

.146 

.031 

.008 

.882 

.095 

.345 

.911 

.309 

.598 

.864 

.813 

.313 

.071 

.603 
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GLM Table {or variation in Sward biomass with treatment 

Tests of Between-Subjects Effects 

Dependent Variable'grassDW 

Type III Sum 

Source of Squares 

Corrected Model 1682853.811a 

Intercept 18483.620 

siten 6801.133 

SEVd 13573.556 

SEVa 103849.375 

meanWTD 40118.970 

cut 1400497.210 

lime 3601.058 

Manure 6343.332 

Drain 872.939 

cut· Lime 6300.129 

cut· Manure 279.834 

cut· Drain 1285.016 

lime • Manure 15206.105 

lime· Drain 4872.920 

Manure • Drain 560.918 

cut • Lime • Manure 2411.375 

cut • Lime • Drain 3182.740 

cut • Manure • Drain 2594.621 

lime • Manure • Drain 93076.264 

cut • Lime • Manure • 9614.030 

Drain 

Error 450927.252 

Total 13866710.561 

Corrected Total 2133781.064 

df 

19 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

28 

48 

47 

a. R Squared = .789 (Adjusted R Squared = .645) 

Mean Square F 

88571.253 5.500 

18483.620 1.148 

6801.133 .422 

13573.556 .843 

103849.375 6.448 

40118.970 2.491 

1400497.210 86.963 

3601.058 .224 

6343.332 .394 

872.939 .054 

6300.129 .391 

279.834 .017 

1285.016 .080 

15206.105 .944 

4872.920 .303 

560.918 .035 

2411.375 .150 

3182.740 .198 

2594.621 .161 

93076.264 5.780 

9614.030 .597 

16104.545 

Sig. 

.000 

.293 

.521 

.366 

.017 

.126 

.000 

.640 

.535 

.818 

.537 

.896 

.780 

.340 

.587 

.853 

.702 

.660 

.691 

.023 

.446 
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GLM Tables tii!" Flinction(/l groups with treatment 

GLM Tahles lin" Sed.lll' with treatment 

Type III Sum 

Source of Squares df Mean Square F Sig. 

Corrected Model 9590.197'1 19 504.747 1.864 .065 

Intercept 3179.792 1 3179.792 11.743 .002 

siten 955.737 1 955.737 3.530 .071 

SEVd 641.049 1 641.049 2.367 .135 

SEVa 3363.156 1 3363.156 12.421 .001 

meanWTD 1788.711 1 1788.711 6.606 .016 

cut 118.323 1 118.323 .437 .514 

Lime 55.493 1 55.493 .205 .654 

Manure 596.518 1 596.518 2.203 .149 

Drain 2233.357 1 2233.357 8.248 .008 

cut· lime 117.808 1 117.808 .435 .515 

cut· Manure 243.815 1 243.815 .900 .351 

cut· Drain 65.550 1 65.550 .242 .627 

Lime • Manure 157.601 1 157.601 .582 .452 

Lime· Drain 1.232 1 1.232 .005 .947 

Manure • Drain 118.442 1 118.442 .437 .514 

cut • Lime • Manure 221.605 1 221.605 .818 .373 

cut • Lime • Drain 37.912 1 37.912 .140 .711 

cut • Manure • Drain 85.287 1 85.287 .315 .579 

Lime • Manure • Drain 159.582 1 159.582 .589 .449 

cut • lime • Manure • 401.245 1 401.245 1.482 .234 

Drain 

Error 7581.575 28 270.771 

Total 55387.582 48 

Corrected Total 17171.772 47 

a. R Squared = .558 (Adjusted R Squared = .259) 
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GLM Tables fiJI Hush \\'ltl1 treatment 

Type III Sum 

Source of Squares df Mean Square F Sig. 

Corrected Model 854,389' 19 44.968 1.681 .103 

Intercept 185.396 1 185.396 6.932 .014 

siten 51.195 1 51.195 1.914 .177 

SEVd 7.661 1 7.661 .286 .597 

SEVa 159.464 1 159.464 5.962 .021 

meanWTD 78.559 1 78.559 2.937 .098 

cut 140.953 1 140.953 5.270 .029 

Lime 25.609 1 25.609 .957 .336 

Manure 32.231 1 32.231 1.205 .282 

Drain 74.994 1 74.994 2.804 .105 

cut -lime .237 1 .237 .009 .926 

cut - Manure 8.409 1 8.409 .314 .579 

cut - Drain 84.882 1 84.882 3.174 .086 

Lime - Manure 65.476 1 65.476 2.448 .129 

Lime - Drain 98.441 1 98.441 3.681 .065 

Manure - Drain 9.446 1 9.446 .353 .557 

cut - Lime - Manure 1.861 1 1.861 .070 .794 

cut - Lime • Drain .094 1 .094 .004 .953 

cut - Manure • Drain .191 1 .191 .007 .933 

Lime - Manure • Drain 145.137 1 145.137 5.426 .027 

cut - Lime • Manure • 8.685 1 8.685 .325 .573 

Drain 

Error 748.901 28 26.746 

Total 2655.742 48 

Corrected Total 1603.290 47 

a. R Squared = .533 (Adjusted R Squared = .216) 
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GLM Tables for Legumes with treatment 

Type III Sum 

Source of Squares df Mean Square F Sig. 

Corrected Model 105.4601 19 5.551 1.750 .087 

Intercept 8.261 1 8.261 2.605 .118 

siten .018 1 .018 .006 .941 

SEVd 12.255 1 12.255 3.864 .059 

SEVa 14.076 1 14.076 4.438 .044 

meanWTD 2.380 1 2.380 .751 .394 

cut 7.602 1 7.602 2.397 .133 

lime 21.103 1 21.103 6.654 .015 

Manure 2.627 1 2.627 .828 .371 

Drain 3.287 1 3.287 1.036 .317 

cut· Lime 5.798 1 5.798 1.828 .187 

cut· Manure .032 1 .032 .010 .921 

cut • Drain 4.952 1 4.952 1.561 .222 

lime • Manure .877 1 .877 .276 .603 

lime· Drain .023 1 .023 .007 .933 

Manure • Drain .118 1 .118 .037 .848 

cut • Lime • Manure 2.614 1 2.614 .824 .372 

cut • Lime • Drain 3.125 1 3.125 .985 .329 

cut • Manure • Drain .139 1 .139 .044 .836 

Lime • Manure • Drain 2.304 1 2.304 .727 .401 

cut • lime • Manure • .112 1 .112 .035 .852 

Drain 

Error 88.804 28 3.172 

Total 264.350 48 

Corrected Total 194.264 47 

a. R Squared = .543 (Adjusted R Squared = .233) 
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G/,M Tables lor Gruss with treatment 

Type III Sum 

Source of Squares df Mean Square F Sig. 

Corrected Model 10054.710' 19 529.195 2.385 .018 

Intercept 2183.881 1 2183.881 9.842 .004 

siten 225.751 1 225.751 1.017 .322 

SEVd 395.522 1 395.522 1.782 .193 

SEVa 4242.814 1 4242.814 19.120 .000 

meanWTD 2905.527 1 2905.527 13.094 .001 

cut 27.208 1 27.208 .123 .729 

Lime 6.557 1 6.557 .030 .865 

Manure 1234.828 1 1234.828 5.565 .026 

Drain 2921.859 1 2921.859 13.167 .001 

cut * Lime 5.709 1 5.709 .026 .874 

cut * Manure 27.895 1 27.895 .126 .726 

cut * Drain 67.073 1 67.073 .302 .587 

Lime * Manure 13.381 1 13.381 .060 .808 

Lime· Drain 81.790 1 81.790 .369 .549 

Manure * Drain 225.187 1 225.187 1.015 .322 

cut • Lime • Manure 3.035 1 3.035 .014 .908 

cut • Lime • Drain 92.972 1 92.972 .419 .523 

cut • Manure * Drain 17.598 1 17.598 .079 .780 

Lime * Manure * Drain 473.641 1 473.641 2.134 .155 

cut • Lime • Manure • 401.165 1 401.165 1.808 .190 

Drain 

Error 6213.233 28 221.901 

Total 143490.246 48 

Corrected Total 16267.942 47 

a. R Squared = .618 (Adjusted R Squared = .359) 
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GLM Tables for Forbes with treatment 

Type III Sum 

Source of Squares df Mean Square F Sig. 

Corrected Model 1214.763a 19 63.935 1.784 .080 

Intercept 34.448 1 34.448 .961 .335 

siten 78.653 1 78.653 2.195 .150 

SEVd 22.075 1 22.075 .616 .439 

SEVa 2.999 1 2.999 .084 .774 

meanWTD 18.398 1 18.398 .513 .480 

cut 2.144 1 2.144 .060 .809 

Lime 28.680 1 28.680 .800 .379 

Manure 218.239 1 218.239 6.090 .020 

Drain .003 1 .003 .000 .993 

cut * Lime 128.197 1 128.197 3.577 .069 

cut * Manure 52.627 1 52.627 1.469 .236 

cut * Drain 23.499 1 23.499 .656 .425 

Lime * Manure 3.029 1 3.029 .085 .773 

lime * Drain 4.579 1 4.579 .128 .723 

Manure * Drain 1.941 1 1.941 .054 .818 

cut * Lime * Manure 166.195 1 166.195 4.638 .040 

cut * Lime • Drain 24.465 1 24.465 .683 .416 

cut • Manure * Drain 17.900 1 17.900 .499 .486 

lime * Manure * Drain 1.956 1 1.956 .055 .817 

cut * Lime • Manure • 10.757 1 10.757 .300 .588 

Drain 

Error 1003.411 28 35.836 

Total 12185.411 48 

Corrected Total 2218.174 47 

a. R Squared = .548 (Adjusted R Squared = .241) 
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GLM Tables farGrimes CSR with treatment 

GLM Tables far"C" with treatment 

Type III Sum 

Source of Squares df Mean Square F Sig. 

Corrected Model 2.764a 19 .145 1.628 .118 

Intercept 3.486 1 3.486 39.010 .000 

siten .026 1 .026 .287 .596 

SEVd .134 1 .134 1.501 .231 

SEVa .328 1 .328 3.672 .066 

meanWTD .768 1 .768 8.597 .007 

cut .179 1 .179 2.006 .168 

Lime .008 1 .008 .087 .770 

Manure .337 1 .337 3.776 .062 

Drain .038 1 .038 .425 .520 

cut· Lime .001 1 .001 .007 .932 

cut· Manure .000 1 .000 .004 .948 

cut· Drain .069 1 .069 .774 .387 

Lime * Manure .002 1 .002 .018 .894 

Lime • Drain .005 1 .005 .058 .812 

Manure • Drain .005 1 .005 .051 .823 

cut * Lime • Manure .000 1 .000 .002 .966 

cut * Lime • Drain .082 1 .082 .916 .347 

cut • Manure • Drain .003 1 .003 .038 .848 

Lime • Manure * Drain .014 1 .014 .160 .692 

cut * Lime * Manure • .001 1 .001 .010 .920 

Drain 

Error 2.502 28 .089 

Total 948.515 48 

Corrected Total 5.266 47 

a. R Squared = .525 (Adjusted R Squared = .202) 
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GLM Tables for" S" with treatment 

Type III Sum 

Source of Squares df Mean Square F Sig. 

Corrected Model 7.866a 19 .414 2.180 .030 

Intercept 1.048 1 1.048 5.518 .026 

siten .662 1 .662 3.488 .072 

SEVd .015 1 .015 .079 .781 

SEVa .041 1 .041 .218 .644 

meanWTD .060 1 .060 .318 .577 

cut .335 1 .335 1.766 .195 

lime .050 1 .050 .266 .610 

Manure .275 1 .275 1.446 .239 

Drain .003 1 .003 .015 .904 

cut * lime .002 1 .002 .013 .910 

cut * Manure .038 1 .038 .201 .657 

cut * Drain .011 1 .011 .058 .811 

lime * Manure 1.039 1 1.039 5.472 .027 

Lime * Drain .476 1 .476 2.505 .125 

Manure * Drain .016 1 .016 .084 .774 

cut * Lime * Manure .342 1 .342 1.802 .190 

cut * Lime * Drain .097 1 .097 .511 .481 

cut * Manure * Drain .018 1 .018 .094 .761 

Lime * Manure * Drain .365 1 .365 1.921 .177 

cut * Lime * Manure * .001 1 .001 .007 .933 

Drain 

Error 5.316 28 .190 

Total 568.538 48 

Corrected Total 13.182 47 

a. R Squared = .597 (Adjusted R Squared = .323) 
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GLM Tables for "R"with treatment 

Type III Sum 

Source of Squares df Mean Square F Sig. 

Corrected Model 4.088a 19 .215 1.680 .104 

Intercept .333 1 .333 2.603 .118 

siten .040 1 .040 .314 .579 

SEVd .040 1 .040 .313 .580 

SEVa .471 1 .471 3.675 .065 

meanWTD .125 1 .125 .977 .331 

cut 1.070 1 1.070 8.356 .007 

lime .000 1 .000 .003 .956 

Manure .085 1 .085 .663 .422 

Drain .290 1 .290 2.263 .144 

cut * lime .013 1 .013 .102 .752 

cut· Manure .055 1 .055 .432 .516 

cut· Drain .229 1 .229 1.787 .192 

lime • Manure .374 1 .374 2.920 .099 

Lime • Drain .172 1 .172 1.342 .257 

Manure • Drain .007 1 .007 .057 .812 

cut • Lime • Manure .340 1 .340 2.655 .114 

cut • Lime • Drain .214 1 .214 1.671 .207 

cut • Manure • Drain .110 1 .110 .858 .362 

Lime • Manure • Drain .010 1 .010 .081 .778 

cut • Lime * Manure * .015 1 .015 .118 .734 

Drain 

Error 3.587 28 .128 

Total 946.837 48 

Corrected Total 7.675 47 

a. R Squared = .533 (Adjusted R Squared = .216) 
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GLM Tables for Ellenburg values with treatment 

GLM Tables for Ellenburg N values with treatment 

Type III Sum 

Source of Squares df Mean Square F Sig. 

Corrected Model 1.539a 19 .081 1.005 .484 

Intercept .465 1 .465 5.774 .023 

siten .003 1 .003 .032 .858 

SEVd 2.371E-6 1 2.371E-6 .000 .996 
SEVa .629 1 .629 7.800 .009 
meanWTD .405 1 .405 5.030 .033 
cut 1.181E-5 1 1.181E-5 .000 .990 
Lime .079 1 .079 .986 .329 
Manure .000 1 .000 .003 .960 
Drain .142 1 .142 1.762 .195 
cut· Lime .001 1 .001 .015 .904 
cut· Manure .005 1 .005 .064 .802 

cut • Drain .071 1 .071 .877 .357 

Lime • Manure .288 1 .288 3.574 .069 
Lime· Drain .000 1 .000 .003 .956 

Manure • Drain .000 1 .000 .002 .961 

cut • lime • Manure .187 1 .187 2.315 .139 

cut • Lime • Drain .016 1 .016 .196 .661 

cut • Manure • Drain .014 1 .014 .174 .680 

Lime • Manure • Drain .001 1 .001 .010 .921 

cut • Lime • Manure • .120 1 .120 1.490 .232 

Drain 

Error 2.257 28 .081 

Total 1352.179 48 

Corrected Total 3.796 47 

a. R Squared = .405 (Adjusted R Squared = .002) 
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GLM Tables for Ellenburg"F" values with treatment 

Type III Sum 

Source of Squares df Mean Square F Sig. 

Corrected Model 8.081a 19 .425 4.803 .000 

Intercept 14.218 1 14.218 160.545 .000 

siten .199 1 .199 2.242 .146 

SEVd .021 1 .021 .240 .628 
SEVa 3.595 1 3.595 40.598 .000 
meanWTD 3.672 1 3.672 41.461 .000 
cut .121 1 .121 1.371 .251 
lime .465 1 .465 5.253 .030 
Manure .136 1 .136 1.538 .225 
Drain 1.194 1 1.194 13.488 .001 
cut * lime .057 1 .057 .648 .428 
cut * Manure .002 1 .002 .025 .875 
cut * Drain .242 1 .242 2.729 .110 
Lime * Manure .000 1 .000 .003 .959 
Lime * Drain .214 1 .214 2.414 .131 
Manure * Drain .002 1 .002 .018 .893 
cut * Lime * Manure .399 1 .399 4.507 .043 
cut • Lime * Drain .034 1 .034 .387 .539 
cut * Manure * Drain .070 1 .070 .791 .382 
Lime * Manure • Drain .906 1 .906 10.232 .003 

cut • Lime • Manure * .408 1 .408 4.604 .041 

Drain 

Error 2.480 28 .089 

Total 2267.310 48 

Corrected Total 10.561 47 

a. R Squared = .765 (Adjusted R Squared = .606) 
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Appendix 4.3 Location of Southlake plots (The fields are marked with a red 
Star) 
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Appendix 4.4 Location of Kings Sedgemoor plots (The fields are marked with 
red Stars) . 
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Appendix 4.5 The location of the treatment plots within the fields for 
ollthlake moor c= cut, L=lime, D= drained and M=manllre 
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Appendix 4.6 The location of the treatment plots within the fields for West 

sedgemoor c= cut L=lime, D= drained and M=manure 
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APpendiX 4.6 The locatiOn of the treatment plots within the fields for West 

sedgemOor c= cut, L=lime, D= drained and M=manure 
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